Вспоминаем физику: работа, энергия и мощность. Понятие энергия и ее основные виды

Энергия (от греч. energeie - действие, деятельность) представляет собой общую количественную меру движения и взаимодействия всех видов материи. Это способность к совершению работы, а работа совершается тогда, когда на объект действует физическая сила (давление или гравитация). Работа- это энергия в действии.

Тепловая энергия широко используется на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива.

Электрическая энергия является одним из наиболее совершенных видов энергии в виду ряда достоинств.

Электрическая энергия является наиболее чистой формой энергии и может быть получена из большого многообразия первичных источников (например, уголь, нефть, газ, энергия воды и атомная энергия). Электрическая энергия имеет ряд неоспоримых преимуществ по сравнению с другими видами производной энергии – возможность получения практически любых количеств энергии как от элемента размером со спичечную головку, так и от турбогенераторов мощностью более 1000 МВт, сравнительная простота ее передачи на расстояние и легкость преобразования в энергию других видов. Основная проблема - это ее хранение.

Она более эффективна с точки зрения использования, чем ископаемое топливо, поскольку имеет широко известные преимущества: обеспечение чистоты, удобство управления, доступность. Электроэнергия может быть использована значительно более эффективно и значительно более целенаправленно, чем энергия сжигаемого топлива. Электрические нагревательные системы характеризуются высокой технической эффективностью, и, несмотря на более высокую стоимость энергии по сравнению с энергией других источников, они более экономичны вследствие более низких эксплуатационных расходов.

Электрическая и тепловая энергия производятся на:

- тепловых электрических станциях на органическом топливе (ТЭС) с использованием в турбинах водяного пара – (паротурбинные установки – ПТУ), продуктов сгорания – (газотурбинные установки – ГТУ), их комбинаций – (парогазовые установки – ПГУ);

- гидравлических электрических станциях (ГЭС), использующих энергию падающего потока воды, течения, прилива;

- атомных электрических станциях (АЭС), использующих энергию ядерного распада.

Тепловые и атомные электростанции. Типовые схемы ТЭС и АЭС. Паротурбинные конденсационные электростанции и теплоэлектроцентрали (ТЭЦ) с комбинированной выработкой тепла и электрической энергии.

По виду вырабатываемой энергии:

· тепловые электростанции, вырабатывающие только электроэнергию,- конденсационные электростанции (КЭС);

· тепловые электростанции, вырабатывающие электрическую и тепловую энергию,- теплоэлектроцентрали (ТЭЦ).

По виду теплового двигателя:

· электростанции с паровыми турбинами - паротурбинные ТЭС и АЭС;

· электростанции с газовыми турбинами - газотурбинные ТЭС;

· электростанции с парогазовыми установками - парогазовые ТЭС;

Тепловые электростанции (ТЭС) вырабатывают электроэнергию в результате преобразования тепловой энергии, которая выделяется при сжигании органического топлива (угля, нефти, газа).

В машинном зале тепловой электростанции установлен котел с водой.

При сгорании топлива вода в котле нагревается до нескольких сот градусов и превращается в пар.

Пар под давлением вращает лопасти турбины, турбина в свою очередь вращает генератор.

Генератор вырабатывает электрический ток.

Электрический ток поступает в электрические сети и по ним поступает на заводы, в школы, дома, больницы.

Передача электроэнергии от электростанций по линиям электропередачи осуществляется при напряжениях 110-500 киловольт, то есть значительно превышающих напряжения генераторов.

Повышение напряжения необходимо для передачи электроэнергии на большие расстояния.

Затем необходимо обратное понижение напряжения до уровня, удобного потребителю.

Преобразование напряжения происходит в электрических подстанциях с помощью трансформаторов.

А тепло в виде горячей воды поступает из ТЭЦ по теплотрассам.

Градирня - устройство для охлаждения воды на электростанции атмосферным воздухом.

Котел паровой - закрытый агрегат для получения пара на электростанции посредством нагревания воды. Нагрев воды осуществляется посредством сжигания топлива.

ЛЭП - линия электропередачи. Предназначена для передачи электричества. Различают воздушные ЛЭП (провода, протянутые над землей) и подземные (силовые кабели).

Рис.11 – Принципиальные схемы ТЭС (а) и ТЭЦ (б)

В настоящее время на ТЭС и ТЭЦ наряду с паротурбинными установками (ПТУ) получают распространение парогазовые установки (ПГУ), работающие по комбинированной схеме.

В первой ступени ПГУ с газовой турбиной в качестве первичного источника энергии и рабочего тела используют природный газ, а вторичным рабочим телом являются продукты сгорания. Во второй ступени источником энергии служат выхлопные газы турбины, а рабочим телом – пар, генерируемый в парогенераторе с их помощью.

Атомные электроcтанции.

Такие электростанции действуют по такому же принципу, что и ТЭЦ, но используют для парообразования энергию, получающуюся при радиоактивной распаде. В качестве топлива используется обогащенная руда урана.

Рис. 12. Принципиальная схема АЭС.

По сравнению с тепловыми и гидроэлектростанциями атомные электростанции имеют серьезные преимущества: они требуют малое количество топлива, не нарушают гидрологических режим рек, не выбрасывают в атмосферу загрязняющие ее газы. Основной процесс, идущий на атомной электростанции - управляемое расщепление урана-235, при котором выделяется большое количество тепла. Главная часть атомной электростанции - ядерный реактор, роль которого заключается в поддержании непрерывной реакции расщепления.

Ядерное топливо - руда, содержащая 3% урана 235; ею заполняются длинные стальные трубки - тепловыделяющие элементы (ТВЭЛы). Если много ТВЭЛов разместить поблизости друг от друга, то начнется реакция расщепления. Чтобы реакцию можно было контролировать, между ТВЭЛами вставляют регулирующие стержни; выдвигая и вдвигая их, можно управлять интенсивностью распада урана-235. Комплекс неподвижных ТВЭЛов и подвижных регуляторов и есть ядерные реактор. Тепло, выделяемое реактором, используется для кипячения воды и получения пара, который приводит в движение турбину атомной электростанции, вырабатывающую электричество.

33. Преобразования солнечной энергии в тепловую и электрическую. Ветроэнегетика и гидроэнергетика.

Основным направлением использования солнечной энергии является теплоснабжение. Для прямого преобразования солнечной энергии в тепловую разработаны и широко используются на практике установки солнечного теплоснабжения (СТО) для различных целей (горячее водоснабжение, отопление и кондиционирование воздуха в жилых, общественных, санаторно-курортных зданиях, подогрев воды в плавательных бассейнах и различных процессах сельскохозяйственного производства).

По данным метеорологов в Республике Беларусь 150 дней в году пасмурно, 185 дней - с переменной облачностью и 30 - ясных, а всего число часов солнечного сияния в Беларуси достигает 1200 часов на севере страны и 1300-на юге.

Солнечная электростанция представляет собой сооружение, состоящее из множества солнечных коллекторов, ориентирующихся на Солнце. Каждый коллектор передает солнечную энергию жидкости-теплоносителю, которая, превратившись в пар, от всех коллекторов собирается в центральной энергостанции и поступает на турбину энергогенератора.

Рисунок 13 - Последовательность приемников солнечного излучения

в порядке возрастания их эффективности и стоимости

Основным элементом солнечной нагревательной системы является приемник, в котором происходит поглощение солнечного излучения и передача энергии жидкости. На рисунке 13 схематически изображены различные варианты приемников солнечной энергии. Опыт эксплуатации этих установок показывает, что в системах солнечного горячего водоснабжения может быть замещено 40-60 % годовой потребности в органическом топливе в зависимости от района расположения при нагреве воды до 40 ... 60 °С.

а) открытый резервуар на поверхности земли; б) открытый резервуар, теплоизолированный от земли; в) черный резервуар; г) черный резервуар с теплоизолированным дном; д) закрытые черные нагреватели,

е) металлические проточные нагреватели со стеклянной крышкой;

ж) металлические проточные нагреватели с двумя стеклянными крышками; з) то же, с селективной поверхностью; и) то же, с вакуумом.

Воздухонагреватель представляет собой приемник, в котором имеется пористая или шероховатая черная поглощающая поверхность, нагревающая поступающий воздух, который затем подается к потребителю.

Солнечный коллектор включает в себя приемник , поглощающий солнечное излучение, и концентратор , представляющий собой оптическую систему, собирающую солнечное излучение и направляющую его на приемник. Концентратор представляет собой чаще всего зеркало параболической формы, в фокусе которого располагается приемник излучения. Он постоянно вращается, обеспечивая ориентацию на Солнце.

Фотоэлектрические преобразователи представляют собой устройства, действие которых основано на использовании фотоэффекта, в результате которого при освещении вещества светом происходит выход электронов из металлов (фотоэлектрическая эмиссия или внешний фотоэффект), перемещение зарядов через границу раздела полупроводников с различными типами проводимости (вентильный фотоэффект), изменение электрической проводимости (фотопроводимость). Методы фотоэлектри-ческого преобразования солнечной энергии в электрическую находит применение для питания потребителей в широком интервале мощностей: от мини-генераторов для часов и калькуляторов мощностью от несколько ватт до центральных электростанций мощностью несколько мегаватт.

Ветроэнергетика представляет собой область техники, использующую энергию ветра для производства энергии, а устройства, преобразующие энергию ветра в полезную механическую, электрическую или тепловую виды энергии, называются ветроэнергетическими установками (ВЭУ), или ветроустановками , и являются автономными

Энергия ветра в механических установках, например на мельницах и в водяных насосах, используется уже несколько столетий. После резкого скачка цен на нефть в 1973 г. интерес к таким установкам резко возрос. Большая часть существующих установок построена в конце 70-х - начале 80-х годов на современном техническом уровне при широком использовании последних достижений аэродинамики, механики, микроэлектроники для контроля и управления ими. Ветроустановки мощностью от нескольких киловатт до нескольких мегаватт производятся в Европе, США и других частях мира. Большая часть этих установок используется для производства электроэнергии, как в единой энергосистеме, так и в автономных режимах.

Одно из основных условий при проектировании ветроустановок - обеспечение их защиты от разрушений очень сильными случайными порывами ветра. В каждой местности в среднем раз в 50 лет бывают ветры со скоростью, в 5-10 раз превышающей среднюю, поэтому ветроустановки приходиться проектировать с большим запасом прочности. Максимальная проектная мощность ветроустановки определяется для некоторой стандартной скорости ветра, обычно принимаемой равной 12 м/с.

Ветроэнергетическая установка состоит из ветроколеса, генератора электрического тока, сооружения для установки на определенной высоте от земли ветряного колеса, системы управления параметрами генерируемой электроэнергии в зависимости от изменения силы ветра и скорости вращения колеса.

Ветроустановки классифицируются по двум основным признакам: геометрии ветроколеса и его положению относительно направления ветра. Если ось вращения ветроколеса параллельна воздушному потоку, то установка называется горизонтально-осевой, если перпендикулярно-вертикально-осевой.

Принцип действия ветроэнергетической установки состоит в следующем. Ветряное колесо, воспринимая на себя энергию ветра, вращается и посредством пары конических шестерен и с помощью длинного вертикального вала передает свою энергию на нижний горизонтальный трансмиссионный вал и далее посредством второй пары конических шестерен и ременной передачи - электрическому генератору или другому механизму.

Поскольку периоды безветрия неизбежны, то для исключения перебоев в электроснабжении ВЭУ должны иметь аккумуляторы электрической энергии или быть запараллелены, на случаи безветрия, с электроэнергетическими установками других типов.

Энергетическая программа Республики Беларусь до 2010 г основными направлениями использования ветроэнергетических ресурсов на ближайший период предусматривает их применение для привода насосных установок и в качестве источников энергии для электродвигателей. Эти области применения характеризуются минимальными требованиями к качеству электрической энергии, что позволяет резко упростить и удешевить ветроэнергетические установки. Особенно перспективным считается их использование в сочетании с малыми гидроэлектростанциями для перекачки воды. Применение ветроэнергетических установок для водоподъёма, электроподогрева воды и электроснабжения автономных потребителей к 2010 г. предполагается довести до 15 МВт установленной мощности, что обеспечит экономию 9 тыс. т у т. в год.

Гидроэлектростанция.

Гидроэнергетика представляет отрасль науки и техники по использованию энергии движущийся воды (как правило, рек) для производства электрической, а иногда и механической энергии. Это наиболее развитая область энергетики на возобновляемых ресурсах.

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию. Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках, сооружая плотины и водохранилища.

В гидроэлектростанции кинетическая энергия падающей воды используется для производства электроэнергии. Турбина и генератор преобразовывают энергию воды в механическую энергию, а затем - в электроэнергию. Турбины и генераторы установлены либо в самой дамбе, либо рядом с ней.

Рис. 14. Принципиальная схема гидроэлектростанции.

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое – действие, деятельность ) понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .
Согласно представлениям физической науки, энергия – это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три вида относятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.
Если энергия – результат изменения состояния движения материальных точек или тел, то она называется кинетической ; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.
Если энергия – результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной ; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.
Энергию в естествознании в зависимости от природы делят на следующие виды.
Механическая энергия – проявляется при взаимодействии, движении отдельных тел или частиц.
К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах – транспортных и технологических.
Тепловая энергия – энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.
Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).
Электрическая энергия энергия движущихся по электрической цепи электронов (электрического тока).
Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).
Химическая энергия это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.
Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.
Магнитная энергия – энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.
Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой.
Электромагнитная энергия – это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.
Таким образом, электромагнитная энергия – это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.
Ядерная энергия – энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).
Бытует и старое название данного вида энергии – атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.
Гравитационная энергия – энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли – энергия силы тяжести.
Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую, энергию атомных взаимодействий – химическую, энергию излучения – электромагнитную, энергию, заключенную в ядрах атомов – ядерную.
Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.
В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен
1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг·м=9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называется первичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию. На рис. 2.1 представлена схема классификации первичной энергии.

Рис. 2.1. Классификация первичной энергии

При классификации первичной энергии выделяют традиционные и нетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.
К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).
Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).
Преимущества электрической энергии. Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.
Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет
(рис. 2.2).

Электрическая энергия – более универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.
Электрификация – основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии – электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями. Электричество – очень удобный для применения и экономичный вид энергии.

Рис. 2.2. Динамика потребления электрической энергии

Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и в повседневной жизни человека:
1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.
2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.
3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.

Закон сохранения энергии

При любых обсуждениях вопросов, связанных с использованием энергии, необходимо отличать энергию упорядоченного движения, известную в технике под названием свободной энергии (механическая, химическая, электрическая, электромагнитная, ядерная) и энергию хаотического движения, т.е. теплоту.
Любая из форм свободной энергии может быть практически полностью использована. В то же время хаотическая энергия тепла при превращении в механическую энергию снова теряется в виде тепла. Мы не в силах полностью упорядочить случайное движение молекул, превратив его энергию в свободную. Более того, в настоящее время практически нет способа непосредственного превращения химической и ядерной энергии в электрическую и механическую, как наиболее используемые. Приходится внутреннюю энергию веществ превращать в тепловую, а затем в механическую или электрическую с большими неизбежными теплопотерями.
Таким образом, все виды энергии после выполнения ими полезной работы превращаются в теплоту с более низкой температурой, которая практически непригодна для дальнейшего использования.
Развитие естествознания на протяжении жизни человечества неопровержимо доказало, какие бы новые виды энергии ни открывались, вскоре обнаруживалось одно великое правило. Сумма всех видов энергии оставалась постоянной, что, в конечном счете, привело к утверждению: энергия никогда не создается из ничего и не уничтожается бесследно, она только переходит из одного вида в другой.
В современной науке и практике эта схема настолько полезна, что способна предсказывать появление новых видов энергии.
Если будет обнаружено изменение энергии, которая не входит в список известных в настоящее время видов энергии, если выяснится, что энергия исчезает или появляется из ничего, то будет сначала «придуман», а затем найден новый вид энергии, который учтет это отклонение от постоянства энергии, т.е. закона сохранения энергии.
Закон сохранения энергии нашел подтверждение в различных областях – от механики Ньютона до ядерной физики. Причем закон сохранения энергии – это не только плод воображения или обобщения экспериментов. Вот почему можно полностью согласиться с утверждением одного из крупнейших физиков-теоретиков Пуанкаре: «Так как мы не в силах дать общего определения энергии, принцип ее сохранения означает, что существует нечто, остающееся постоянным. Поэтому, к каким бы новым представлениям о мире не привели нас будущие эксперименты, мы заранее знаем: в них будет нечто остающееся постоянным, что можно назвать ЭНЕРГИЕЙ».
Учитывая вышеизложенное, терминологически правильно было бы говорить не «энергосбережение», так как «сберечь» энергию невозможно, а «эффективное энергоиспользование».
и т.д.................

Транскрипт

1 Формы энергии и виды энергии Коган И.Ш. 1. Путаница в определениях форм и видов энергия 2. Что следует называть формами энергии и видами энергии? 3. Классификация форм и видов энергии в термодинамике 4. Краткая история появления понятий, связанных с энергией 5. Кинетическая и потенциальная энергии принадлежат каждой форме энергии 6. Сколько может быть всего видов энергии? 7. Что следует назвать формами и видами энергообмена? 8. Биологическая форма энергии и спекуляции вокруг нее 1. Путаница в определениях форм и видов энергия Понятие энергия в современной научной, учебной и справочной литературе и, особенно, в средствах массовой информации обросло большим количеством дополняющих слов, которые иногда не имеют никакого отношения к физике. Но и в самой физике в вопросе систематизации этих дополняющих слов тоже нет четкости. И прежде всего этого касается таких понятий, как формы энергии и виды энергии. В словаре Глоссарий.ру энергия это скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие. (Здесь и далее подчеркивания в цитатах наши - И.К.). О том же говорит и БСЭ: Энергия в природе не возникает из ничего и не исчезает; она только может переходить из одной формы в другую. В приведенных определениях речь идет только о формах движения и о формах энергии. Но можно привести и другие примеры. В популярном метрологическом справочнике сказано так: Различным видам движения и взаимодействия материи соответствуют разные виды энергии: механическая (кинетическая и потенциальная), внутренняя, электромагнитная, ядерная и др.. Здесь речь идет уже о видах движения и видах энергии. В популярном справочнике по физике приведено такое словосочетание: различные виды (формы) энергии. Здесь формы и виды энергии приравнены друг другу. А вот в учебнике по физике энергия делится только на виды: В соответствии с различными формами движения материи рассматривают разные виды энергии - механическую, внутреннюю, электромагнитную, ядерную и др.. И далее: Механическая энергия бывает двух видов - кинетическая и потенциальная. Здесь уже виды энергии соответствуют формам движения. В статье вводятся понятия упорядоченных и неупорядоченных форм энергии, выведенные из упорядоченной работы технических устройств, предназначенной для целенаправленного преобразования одних видов энергии в другие, и неупорядоченной работы, при которой отсутствует упорядоченное движение физической системы. Приведенные сведения свидетельствуют о том, что в современной физике и в современной метрологии энергия на формы и виды не подразделяется вообще. А если подразделяется, то формы и виды энергии трактуются по-разному. Однако таким терминам, как формы энергии и виды энергии следует обязательно придать однозначность, и это сделано в работах . 2. Что следует называть формами энергии и видами энергии?

2 Словарь русского языка так толкует понятия форма и вид: Форма устройство, тип, структура, характер которой обусловлен содержанием. Вид понятие, обозначающее ряд предметов, явлений с одинаковыми признаками и входящее в более общее понятие рода. В соответствии с такой трактовкой форма является более общим, а вид менее общим понятием. Следовательно, вид должен входить в форму как ее составная часть. Применим этот вывод к понятию энергия. В БСЭ в словарной статье энергия указывается: В соответствии с различными формами движения материи рассматривают различные формы энергии. Это напрямую вытекает из закона сохранения энергии, в котором приращение энергии системы равно сумме приращений энергии во всех формах движения системы. Поэтому в соответствии с различными формами движения материи, следует рассматривать и различные формы энергии: механическую, гидравлическую, тепловую, электромагнитную, ядерную и т.д.. Для выяснения того, что следует понимать под видами энергии, приведем обобщенное уравнение состояния в виде:, (1) где dw приращение полной энергии системы; i номер элементарной формы движения; U i разность потенциалов i-ой формы движения; q i координата состояния i-ой формы движения системы; n количество элементарных форм движения в системе; k порядок производной по времени; m наивысший рассматриваемый порядок производной по времени. Уравнение (1) включает в себя в виде выражения в скобках уравнение динамики в i- ой форме движения системы в виде: a 0 q i + a 1 (dq i /dt) + a 2 (d 2 q i /dt 2) + = U i, (2) где a 0, a 1 и a 2 коэффициенты пропорциональности при производных по времени t, разность потенциалов U i рассматривается как воздействие на физическую систему, а слагаемые в левой части как противодействия системы. В современной физике рассматриваются обычно лишь три разных вида противодействий системы, что соответствует в уравнении (1) m = 2, а противодействия при m > 2 пренебрегаются. При порядке производной k = 0 речь идет о противодействии жесткости системы при ее дефлормации, при k = 1 о диссипативном противодействии среды и при k = 2 о противодействии инертности системы. Каждое из этих трех противодействий определяет одну из трех составляющих энергии i-ой формы движения: потенциальной энергии, энергии диссипации и кинетической энергии. Все слагаемые уравнения состояния (1) как раз и следует называть видами энергии. 3. Классификация форм и видов энергии в термодинамике Особую важность представляет собой решение проблемы классификации понятий, связанных с энергией, в термодинамике, поскольку там это невозможно сделать без классификации так называемых термодинамических потенциалов. Последние по своей физической природе являются разновидностями энергии, а вовсе не разновидностями потенциалов, как это следует из их названия.


3 Воспользовавшись справочником , статьей и словарными определениями, на рис. 1 представлена схема классификации понятий, связанных с энергией. При записи определяющих уравнений на этой схеме использованы стандартные обозначения. Схема на рис. 1 используется при систематизации физических понятий. Рис. 1 Классификация понятий, связанных с энергией 4. Краткая история появления понятий, связанных с энергией Появление понятий, приведенных на рис. 1, связано с введением У.Томсоном (Кельвином) в 1851 г. понятия внутренняя энергия, из которого следовало, что полная энергия системы является суммой внешней и внутренней энергии системы. Внешняя энергия состоит из кинетической и потенциальной энергий системы как целого. Внутренняя энергия это энергия системы, зависящая только от ее внутреннего состояния и не включающая в себя виды энергии системы как целого. Она включает в себя энергии всех форм движения, существующих в системе. Связи между полной


4 энергией и ее составными частями указаны на схеме сплошными линиями. Правда, в 2006 г. В.Эткин показал, что часть внешней энергии системы зависит от внутреннего состояния системы. И что деление энергии на внешнюю и внутреннюю не позволяет в полной мере отразить в терминологии качественные различия форм энергии. В 1865 г. после введения Р.Клаузиусом физической величины S под названием энтропия появились дополнительные варианты. Энергию системы стали различать по признаку работоспособности системы. В г.г. Дж.Гиббс разработал метод термодинамических потенциалов и ввел понятие энтальпии (теплосодержания) системы, равной сумме внутренней энергии системы и совершенной ею работы взаимодействия со средой. Эта сумма на схеме указана штриховыми линиями. Работоспособная часть энтальпии (энергия Гиббса) была названа свободной энтальпией. А неработоспособная часть, связанная с хаотическим движением составляющих систему частиц, была названа связанной энергией. Это так называемая обесцененная энергия системы, которую называют также энергией Гельмгольца. Эта сумма на схеме указана пунктирными линиями. В 1882 г. Г.Гельмгольц ввел деление внутренней энергии системы на свободную и связанную энергию. Свободная энергия это работоспособная часть внутренней энергии системы. Классификация Гельмгольца показана на схеме штрих-пунктирными линиями. В 1955 г. З.Рант ввел новые два новые понятия эксергию и анергию, призванных различать полную энергию системы только по признаку работоспособности. Эксергия это работоспособная (технически пригодная) часть полной энергии. Согласно БСЭ, это максимальная работа, которую может совершить система при переходе из данного состояния в равновесие с окружающей средой. Анергия это неработоспособная (технически непригодная) часть полной энергии. Это деление на схеме показано штрихпунктирными линиями с двумя точками. В 2006 г. В.Эткин указал на то, что работа совершается системой не только за счет энергии самой системы, но и окружающей среды (пополняясь в процессе теплообмена с ней) и что эксергия З.Ранта тоже зависит от параметров окружающей среды. А это делает понятие эксергии неоднозначным и неполным. В.Эткин предложил взамен термина эксергия ввести для превратимой (неравновесной) составляющей полной энергии новое понятие инергия, определив ее как способность системы к внутренним превращениям безотносительно к тому, в чем эти превращения будут выражаться в совершении полезной или диссипативной, внешней или внутренней работы. В.Эткин утверждает, что информативнее и вернее деление полной энергии системы на инергию (превратимую часть) и анергию (непревратимую часть). В 2007 г. И.Коган разделил понятия формы энергии и виды энергии и опубликовал схему, представленную на рис. 1, где каждой форме энергии соответствуют (m + 1) видов энергии, показанных на схеме в последнем ряду. 5. Кинетическая и потенциальная энергии принадлежат каждой форме энергии Совершенно неверно приписывать кинетическую и потенциальную энергию только механической форме движения, как это сделано, например, в справочнике по физике . Все виды энергии относятся к любой форме движения и к любой форме энергии. Например, имеется кинетическая электрическая энергия, и это не то же самое, что кинетическая механическая энергия.


5 Конечно, в основе любой формы энергии лежит механическое движение энергоносителей (движение электронов, ионов, молекул газа или жидкости). Но в механической форме движения подразумевается энергия движения тела в целом, а не движение энергоносителей внутри тела. Поэтому, например, кинетическая энергия движения электронов не является кинетической энергией движения тела. Точно так же потенциальная электрическая энергия это не то же самое, что потенциальная механическая энергия. Обычно вместо слов кинетическая электрическая энергия говорят просто об электрической энергии, не подразумевая слово кинетическая. Но слово электрическая определяет форму энергии, а не вид энергии. Точно так же, когда произносят два слова кинетическая энергия, то имеют обычно в виду только кинетическую механическую энергию, а слово механическая при этом опускают. В плане сказанного выше это неверно. В результате смешения понятий формы энергии и виды энергии возникают подчас неверные физические аналогии. Иногда считается, что кинетическая механическая энергия может быть аналогична потенциальной электрической энергии, но такая аналогия неверна, она не отражает физическое содержание явлений. Виды энергии могут переходить друг в друга, при этом оставаясь принадлежащими одной и той же форме энергии. При этом не исключается перенос любого вида энергии данной формы движения в любой вид энергии другой формы движения. В разных разделах физики иногда меняется математическая запись одного и того же вида энергии при переходе от одной формы энергии к другой, а иногда меняется и название. Но это лишь затрудняет понимание сути происходящего. 6. Сколько может быть всего видов энергии? Поскольку в уравнении динамики современная физика рассматривает лишь три слагаемых, то и рассматриваются только три вида энергии (потенциальная, кинетическая и диссипации). Но в уравнениях (1-2) нет запрета на существование видов энергии, определяемых порядком производной по времени k > 2. В частности, четвертый вид энергии (при k = 3) интересует исследователей процессов разгона и торможения двигателей в энергетике, на транспорте, в космонавтике, в теории удара. В работе , например, в систему физических величин включены величины, связанные с четвертым видом энергии. Специалисты по теории удара называют коэффициент a 3 из уравнения (2) резкостью. Пятый вид энергии (при k = 4) может интересовать, например, специалистов по взрывным процессам. Отметим также, что энергия диссипации связана не просто с энергетическим противодействием, а с качественным изменением энергии. К слову, применяемый иногда термин диссипативные потери энергии некорректен, ибо энергия теряться не может. Точнее было бы сказать о диссипативных потерях энергии упорядоченных форм движения. Вместо термина энергия диссипации (в переводе на русский язык энергия рассеяния) в некоторых научных работах применяют термин энергия деградации (в переводе на русский язык энергия вырождения). Но и это не точно, вырождается не энергия, а способность системы производить механическую работу. К числу противодействий системы внешнему энергетическому воздействию следует добавить возможное противодействие физического поля, связанное с перемещением системы в этом поле или с ее возможным поворотом относительно силовых линий поля. Это противодействие является удельным изменением еще одного вида энергии, называемого в физике потенциальной энергией в физическом поле или сокращенно


6 потенциальной энергией положения. Поэтому вид энергии, связанный с противодействием жесткости, следует называть потенциальной энергией деформации. Этот вид потенциальной энергии, в отличие от предыдущего, связан с внутренним силовым полем (полем упругих сил). 7. Что следует назвать формами и видами энергообмена? При переходе энергии из систему в окружающую среду или наоборот следует применять обобщающий термин энергообмен и говорить не о формах и видах энергии, а о формах и видах энергообмена, что и отражено на схеме рис. 2 . Рис. 2 Классификация форм и видов энергообмена Такие общепринятые понятия, как работа силы, теплообмен, количество электроэнергии, являются различными формами энергообмена в различных формах движения. Каждой из них соответствуют виды энергообмена внутри одной и той же формы энергообмена (изменение потенциальной и кинетической энергии, диссипативный


7 энергообмен). Причинами изменения видов энергообмена становятся различные виды противодействий системы (изменения жесткости, сопротивления, инертности). А суммарное противодействие системы, равное и противоположное по знаку энергетическому воздействию dw на систему, состоит из суммы изменений видов противодействий системы. 8. Биологическая форма энергии и спекуляции вокруг нее К формам энергии, естественно, относятся формы энергии любого вида излучения, в том числе, и так называемая биоэнергия. Ей в средствах массовой информации придают какое-то мистическое значение, хотя последнее можно отнести только к желанию неграмотных в физике журналистов придать своим статьям привлекательность и характер сенсации. Дилетанты в области естественных наук авторитетно рассуждают о хорошей и плохой энергии, о положительной и отрицательной энергии, об энергетике души и об энергетике космоса. При этом они не утруждают себя тем, чтобы точно определить, что они понимают под словами энергия и энергетика. Автор тщетно пытается найти в многочисленных публикациях на тему энергетики человека четкое определение этого понятия, пока ему это не удается. В БСЭ имеется определение биоэнергетики, но там недвусмысленно указывается на то, что все исследования в области биоэнергетики основываются на единственно научной точке зрения, согласно которой к явлениям жизни полностью применимы законы физики и химии, а к превращениям энергии в организме основные начала термодинамики. Ничего похожего в публикациях об энергетике человека не имеется. Говорить об энергии в том смысле, хорошая она или плохая, это значит присваивать энергии свойства, в природе отсутствующие. Энергия это мера движения, говорить о хорошем или плохом движении бессмысленно. Короче говоря, журналисты и разные экстрасенсы играются с термином, который им непонятен. Такое положение оказалось возможным по разным причинам. Во-первых, энергия связана с человеческой деятельностью, а в таком смысле это слово хорошо знакомо всем людям, и поэтому хорошо воспринимается в средствах массовой информации. Во-вторых, в других областях науки (не в физике) понятие энергия пытаются трактовать иначе, чем в физике. Различное понимание одного и того же термина явление не такое уж и редкое. Потому-то и следует определять тот или иной термин, прежде чем им пользоваться. В-третьих, жизнь живых существ действительно связана с энергией, особенно с энергий излучения, которое исходит от любых живых существ и в них же извне и входит. На людей влияют энергия магнитного поля Земли, Солнца и других небесных тел, энергия техногенного происхождения и т.д. Но это область биофизики, а не эзотерики. Последняя не дает определения понятию энергия, говоря вместо этого о каких-то неопределенных силах природы, карме, ауре и проч. Воздействие внешнего излучения на человека зависит не только от энергии, но и от частоты излучения. А это еще важнее, так как восприятие излучения носит, как правило, резонансный характер. Энергия воспринимаемого человеком внешнего излучения обычно настолько мала, что она чаще всего пока не фиксируется современными измерительными средствами из-за их относительного высокого порога чувствительности. Но в любом


8 случае энергия излучения остается характеристикой излучения именно в физическом смысле этого слова, а не в каком-нибудь ином. Конечно, одни излучения влияют на самочувствие человека положительно, другие отрицательно. Одно и то же излучение на разных людей может влиять по-разному. Для этого и существуют научные методы исследования, в том числе, и биоэнергетические, ничего общего с магией, колдовством и мистикой не имеющие. Никто не собирается отрицать мудрость древней восточной медицины, но ее достижениям следует давать естественно-научное объяснение, а не пользоваться словесной эквилибристикой. Литература 1. Чертов А.Г., 1990, Физические величины. М.: Высшая школа, 336 с. 2. Яворский Б.М., Детлаф А.А., 1990, Справочник по физике. 3-е изд. М.:Наука, Физматгиз, 624 с. 3. Савельев И.В., 2005, Курс общей физики (в 5 книгах). М.: АСТ: Астрель 4. Эткин В.А., 2008, Энергодинамика (синтез теорий переноса и преобразования энергии). СПб.: Наука, Коган И.Ш., 2007, Систематизация и классификация определений и дополнений к понятию энергия 6. Коган И.Ш., 1998, О возможном принципе систематизации физических величин. Законодательная и прикладная метрология, 5, с.с Эткин В.А., 2006, Энергия и анергия Pirnat P., 2005, Physical Analogies Коган И.Ш., 2009, Систематизация и классификация определений и дополнений к понятию энергия. Автоматизация и IT в энергетике, 2-3, с.с



Виды движения и формы движения в механике Коган И.Ш. СОДЕРЖАНИЕ. 1. Современная классификация видов движения и ее недостатки. 2. Уточненная классификация форм механического движения. 3. Угол поворота и

13 Работа и механическая энергия 131 Энергия как универсальная мера различных форм движения и взаимодействия 132 Работа Кинетическая энергия 133 Поле центральных сил 134 Консервативные и неконсервативные

Государственное бюджетное образовательное учреждение города Севастополя «Средняя общеобразовательная школа 52 имени Ф.Д.Безрукова» Рабочая программа по предмету «Физика» для 7 класса на 2016/2017 учебный

Глава 7 ТЕОРИЯ ПОРЯДКА И ХАОСА. ЭНТРОПИЯ И ИНФОРМАЦИЯ 7.1. План семинарского занятия 1. Обратимые и необратимые процессы для замкнутых и открытых систем. 2. Термодинамическая вероятность данного состояния.

Закон сохранения энергии Работа и кинетическая энергия Работа силы Определения Работа силы F на малом перемещении r определяется как скалярное произведение векторов силы и перемещения: A F r Расписывая

Классификации физических систем и их реальные примеры Коган И.Ш. СОДЕРЖАНИЕ 1. Понятие о дисбалансе между физической системой и окружающей средой. 2. Классификация физических систем по основным признакам.

10 ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК. ЗАКОН ОМА Электрическим током называется упорядоченное (направленное) движение заряженных частиц в пространстве. В связи с этим свободные заряды принято называть также

Основные положения термодинамики (по учебнику А.В.Грачева и др. Физика: 10 класс) Термодинамической системой называют совокупность очень большого числа частиц (сравнимого с числом Авогадро N A 6 10 3 (моль)

На изучение предмета «Физика» в 7 классе отводится 70 часов в год (2 часа в неделю). В конце изучения каждой главы учащиеся выполняют контрольную работу. Всего предусмотрено 5 контрольных и 10 лабораторных

Пояснительная записка Данная рабочая программа предназначена для учащихся 8 и 9 классов общеобразовательных организаций и составлена в соответствии с требованиями: 1. Федерального компонента государственного

Пояснительная записка Рабочая программа по физике для 9 класса составлена в соответствии с правовыми и нормативными документами: Федеральный Закон «Об образовании в Российской Федерации» (от 29.2. 202

ЛЕКЦИЯ 15 Статистический характер II начала термодинамики. Теорема Нернста. Недостижимость абсолютного нуля температуры. II начало термодинамики, как физическая закономерность отличается от первого начала

Не станем прогибаться под изменчивый мир уж лучше он прогнется под нас. «Машина Времени» Изменчивость и отрицательная энтропия В настоящей работе, в свете гипотезы о дискретности природы времени предлагается

1. КЛАССИФИКАЦИЯ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ 1.1. Основные понятия и определения Измерительное преобразование представляет собой отражение размера одной физической величины размером другой физической

Физические поля (поля взаимодействия и поля переноса) Коган И.Ш. СОДЕРЖАНИЕ 1. Краткая история определений понятия "физическое поле". 2. Краткий анализ истории представлений о природе физического поля.

Ошибка Лоренца и Воронежской группы АНАЛИЗ. Беляев Виктор Григорьевич, гор. Фастов. [email protected] Аннотация. Применение, каких либо преобразований координат к уравнениям Максвелла с целью доказательства

Химическая термодинамика ЗАКОНОМЕРНОСТИ ХИМИЧЕСКИХ ПРОЦЕССОВ ЭНЕРГЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ 1 Основные понятия и определения Химическая термодинамика это раздел химии, изучающий взаимные превращения различных

Занятие 8. Термодинамика Вариант 4... Как изменяется внутренняя энергия идеального газа при повышении его температуры?. Увеличивается. Уменьшается. Не изменяется 4. Это не связанные величины 4... Давление

Коган И.Ш. Классификация токов (потоков зарядов) СОДЕРЖАНИЕ 1. Неопределенность определений электрического тока. 2. Электрический ток векторная величина. 3. Виды электрических токов и их наименования 4.

Планируемые результаты изучения учебного предмета Выпускник научится: знать/понимать: - смысл понятий: физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле,

ЭНЕРГИЯ И АНЕРГИЯ В.А. Эткин В.А. Обсуждаются попытки определить понятие энергии и обосновывается возможность вернуть ей близкий к изначальному смысл меры работоспособности системы ENERGY AND ANERGY V.A.

ТЕМА 16 УРАВНЕНИЯ МАКСВЕЛЛА 161 Ток смещения 162 Единая теория электрических и магнитных явлений Максвелла Система уравнений Максвелла 164 Пояснения к теории классической электродинамики 165 Скорость распространения

3.. Работа и количество тепла. 3... Работа внешних сил и работа тела. Запишем работу da, совершаемую внешней силой -F x (минус означает, что внешняя сила направлена против внутренних сил давления газа)

3 СОДЕРЖАНИЕ Введение 4 Параметры состояния тела 5. Удельный объем и плотность 5.2 Давление 5.3 Температура 6 2 Идеальный газ, уравнение состояния идеального газа 7 3 Газовые смеси 9 3. Понятие о газовой

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Программа составлена на основе Федерального компонента государственного стандарта среднего (полного) общего образования и Примерной программы по физике. Федеральный базисный учебный

I. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ При обучении физики в курсе 10 класса применяются вербальные, визуальные, технические, современно-информационные средства обучения; технологии проблемного и развивающего

Тема 1. Кинематика материальной точки и твердого тела 1.1. Предмет физики. Связь физики с другими науками и техникой Слово "физика" происходит от греческого "physis" природа. Т. е. физика это наука о природе.

Преобразование энергии пара в соплах Рис. 12.1. Поток пара в сопле Уравнение энергии. Теоретическая скорость истечения пара из сопл. Уравнение энергии (одно из основных уравнений газодинамики) является

Муниципальное казённое общеобразовательное учреждение «Петровская средняя общеобразовательная школа» «Рассмотрено» Методическое объединение МКОУ «Петровская СОШ» /Рябикина Е.И./ Протокол 1 от «30» августа

АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ «ШКОЛА СОСНЫ» УТВЕРЖДАЮ Директор И.П. Гурьянкина Приказ 8 от «29» августа 2017 г. Рабочая программа по предмету «Физика» 11 класс Среднее общее

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа по физике для 7 класса составлена на основе следующих нормативноправовых и инструктивно-методических документов: - Федерального закона от 29.12.2012 г. 273-ФЗ

Адаптированная рабочая программа для обучающихся с ОВЗ С ЗПР по физике 8 класс Разработчик: Петренко Т.А., учитель физики 2017 г. 1. Пояснительная записка Настоящая программа составлена на основе авторской

М. Петуховский к.т.н., лауреат Государственной премии ИЗЛУЧЕНИЕ ФОТОНОВ И СТРУКТУРА АТОМА В предлагаемой статье автор пытается в популярной форме изложить свой взгляд на процесс излучения света и переноса

«Химическая термодинамика» Лекция 4 Дисциплина «Общая неорганическая химия» для студентов очного отделения Лектор: к.т.н., Мачехина Ксения Игоревна * План лекции 1. Основные понятия. 2. Первый закон термодинамики.

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК Причины возникновения электрического тока Заряженные объекты являются причиной не только электростатического поля, но еще и электрического тока. В этих двух явлениях, есть

I. РАБОЧАЯ ПРОГРАММА по учебному предмету «Физика» для 11 класса 2016 г. II. Пояснительная записка Рабочая программа по физике для 11 класса составлена на основе «Программы для общеобразовательных учреждений.

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными.

Ã. À. Áîðäîâñêèé ÔÈÇÈ ÅÑÊÈÅ ÎÑÍÎÂÛ ÅÑÒÅÑÒÂÎÇÍÀÍÈß УЧЕБНОЕ ПОСОБИЕ ДЛЯ АКАДЕМИЧЕСКОГО БАКАЛАВРИАТА 3-е издание, исправленное и дополненное Ðåêîìåíäîâàíî Ó åáíî-ìåòîäè åñêèì îòäåëîì âûñøåãî îáðàçîâàíèÿ â

Пояснительная записка 0 класс. Стандарт среднего общего образования по физике Изучение физики на ступени среднего общего образования направлено на достижение следующих целей: - освоение знаний о механических,

ЛЕКЦИЯ 11 ЗАКОНЫ СОХРАНЕНИЯ В КВАНТОВОЙ МЕХАНИКЕ. МОМЕНТ ИМПУЛЬСА 1. Симметрия гамильтониана и законы сохранения Гамильтониан системы определяет ее поведение и свойства и может зависеть от ряда параметров.

Аннотация к рабочей программе по физике для 7-9 классов Программа составлена в соответствии с Федеральным компонентом государственного стандарта основного общего образования по физике (приказ Минобразования

Аннотация к рабочей программе по физике 10 класс Рабочая программа по физике для 10 класса составлена на основе: - Закона РФ «Об образовании» 273 от 29.12.2012 г. - федерального компонента государственного

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ Крисюк Борис Эдуардович Основы химической термодинамики. Системой будем называть тело или группу тел, отделенных от окружающей среды реальной или мысленной границей. Система

Unified Fields in Disguise Теория единого поля под маской (Единые поля под маской) Известные уравнения Ньютона и Кулона представляют собой уравнения единого поля в замаскированном виде. Это было непонятно

Лекция 3. Химическое равновесие. Понятие о кинетике химических реакций. Равновесное состояние это такое состояние системы, при котором: а) еѐ интенсивные параметры не изменяются во времени (p, T, C); б)

Пояснительная записка Рабочая программа разработана на основе Федеральной примерной программы и примерной программы среднего общего образования Физика 10-11 кл. Авторы Л.Э. Генденштейн, Ю.И.Дик, Л.А.Кирик.

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет (ГОУ ВПО ИГУ) Физический факультет ОБЩАЯ ФИЗИКА

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа» Рабочая программа по учебному предмету «Физика» для 9 класса на 68 часов. Составлена на основе Программы основного

Лекция 3 Основное уравнение молекулярно-кинетической теории газов. Постоянная Больцмана. Температура и давление как статистические величины. Одной из особенностей физики является использование абстракций

Мунииипальное бюджетное общеобразовательное учреждение «Райковская ередняя общеобразовательная школа имени Н.И. Носова» Рассмотрено на заседании ШІѴІО математического цикла Руков

I. Планируемые результаты освоения учебного предмета «Физика» Личностные результаты обучения: сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей учащихся;

При составлении программы следующие правовые документы 10-11классы были использованы федеральный компонент государственного стандарта среднего (полного) общего образования по физике, утвержденный в 2004

Пояснительная записка. Рабочая программа составлена на основе: *федерального закона Российской федерации от 29.2 202г. 273-ФЗ «Об образовании в Российской Федерации» * федерального компонента государственного

Цель работы: ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ 1.Изучить условия возникновения продольной стоячей волны в упругой среде..измерить скорость распространения упругих

Цель работы: познакомиться с одним из методов определения коэффициента внутреннего трения. Задача: с помощью измерительного микроскопа измерить диаметр шариков, измерить время падения их и высоту падения.

Хмельник С. И. Математическая модель песчаного вихря Аннотация Рассматривается вопрос об источнике энергии в песчаном вихре. Атмосферные явления не могут быть единственным источником энергии поскольку

6 Лекция 1 КОЛЛИГАТИВНЫЕ СВОЙСТВА РАСТВОРОВ Основные понятия: идеальный раствор; снижение давления пара растворителя над раствором р; снижение температуры кристаллизации (замерзания) t з и повышение t

ВОЗНИКНОВЕНИЕ ЭДС ПРИ ДВИЖЕНИИ ПРОВОДНИКА В МАГНИТНОМ ПОЛЕ М.Г. Колонутов канд. техн. наук, доцент Контакт с автором: [email protected] http://kolonutov.mylivepage.ru Аннотация В работе отвергается привлечение

Лекция 4. Динамика материальной точки Содержание 1. Понятие о силе и ее измерении 2. Фундаментальные взаимодействия 3.Первый закон Ньютона. Инерциальные системы отсчета (ИСО) 4. Второй закон Ньютона. Масса

Московский государственный университет иммвломоносова Химический факультет Успенская ИА Конспект лекций по физической химии (для студентов биоинженерии и биоинформатики) wwwchemmsuru/teachg/useskaa/ Москва

Все это разные виды энергии. Для всех происходящих в природе процессов требуется энергия. При любом процессе один вид энергии преобразуется в другой. Продукты питания – картофель, хлеб и т.д. – это хранилища энергии. Почти всю используемую на Земле энергию мы получаем от Солнца. передает Земле столько энергии, сколько произвели бы 100 миллионов мощных электростанций.

Виды энергии

Энергия существует в самых разных видах. Кроме тепловой, световой и энергии есть еще химическая энергия, кинетическая и потенциальная. Электрическая лампочка излучает тепловую и световую энергию. Энергия звука передается при помощи . Волны вызывают вибрацию барабанных перепонок, и поэтому мы слышим звуки. Химическая энергия высвобождается в ходе . Продукты питания, топливо (уголь, бензин), а также батарей­ки - это хранилища химической энергии. Пищевые продукты - это склады химической энергии, высвобождающейся внутри организма.

Движущиеся тела обладают кинетической энергией, т.е. энергией движения. Чем быстрее движется тело, тем боль­ше его кинетическая энергия. Теряя скорость, тело теряет кинетическую энергию. Ударяясь о неподвижный объект, движущееся тело передает ему часть своей кинетической энергии и при­водит его в . Часть энергии, получаемой с пищей, животные обращают в кинетическую.

Потенциальной энергией обладают тела, находящиеся в силовом поле, например в гравитационном или магнитном. Эластичные или упругие тела (обладающие способностью вытягиваться) имеют потенциальную энергию натяжения или упругости. Маятник обладает максимальной потенциальной энергией, когда находится в верхней точке. Разворачиваясь, пружина освобождает свою потенциальную энергию и заставляет колёсики в часах вращаться. Растения получают энергию от и производят питательные вещества - создают запасы химической энергии.

Превращение энергии

Закон сохранения энергии говорит, что энергия не создается из ничего и не теряется бесследно. При всех происходящих в природе процессах один вид энергии превращается в другой. Химическая энергия батареек фонарика превращается в электрическую. В лампочке электрическая энергия превращается в тепловую и световую. Мы привели пример этой «энергетической цепочки» чтобы показать вам, как один вид энергии превращается в другой.

Уголь - это спрессованные останки растении, живших много лет назад. Когда-то они получили энергию от Солнца. Уголь представляет собой запас химической энергии. Когда уголь сгорает, его химическая энергия прекращается в тепловую. Тепловая энергия нагревает , и она испаряется. Пар вращает турбину. производя тем самым кинетическую энергию - энергию движения. Генератор преобразует кинетическую энергию в электрическую. Разнообразные устройства - лампы, обогреватели, магнитофоны - потребляют электроэнергию и переводят в звук, свет и тепло.

Конечными результатами во многих процессах превращения энергии являются свет и тепло. Хотя энергия не пропадает, она уходит в пространство, и её трудно уловить и использовать.

Солнечная энергия

Энергия Солнца доходит до в виде электромагнитных волн. Только так энергия может передаваться через открытый космос. Она может использоваться для создания электроэнергии при помощи фотоэлементов или для нагревания воды в солнечных коллекторах. Панель коллектора поглощает тепловую энергию Солнца. На рисунке показана панель коллектора в разрезе. Черная панель поглощает поступающую от Солнца тепловую энергию, и вода в трубах нагревается. Так устроена крыша дома, обогреваемого Солнцем. Солнечная энергия передаётся воде, используемой для бытовых нужд и отопления. В энергохранилище попадают излишки тепла. Энергия сохраняется при помощи химических реакций.

Энергетические ресурсы

Энергия нужна нам для освещения и обогрева жилищ, для приготовления пищи, для того, чтобы могли работать заводы и двигать­ся автомобили. Эта энергия образуется при сгорании топлива. Есть и другие способы получения энергии - к примеру, ее производят гидроэлектростанции . Для приготовления пищи и обогрева жилья почти половина сжигает дрова, навоз или уголь.

Древесина, уголь, нефть и природный газ называются невозобновимыми ресурса­ми , так как их используют только один раз. Солнце, ветер, вода - это возобновимые энергоресурсы , так как сами они не исчезают при производстве энергии. В своей деятельности человек использует для добычи энергии ископаемые ресурсы – 77%, древесину – 11%, возобновляемые энергоресурсы – 5% и – 3%. Уголь, нефть и природный газ мы называем ископаемым топливом , так как мы добываем их из недр Земли. Образовались они из останков растений и животных. Почти 20% используемой нами энергии производится из угля. При сгорании топлива в попадают углекислый газ и другие газы. В этом отчас­ти заключается причина таких явлений, как кислотные дожди и парниковый эффект. Только около 5 процентов энергии добывается из возобновимых источников. Это энергия Солнца, воды и ветра. Еще один возобновимый источник энергии - газ, образующийся при гниении. Когда органические вещества гниют, выделяются газы, в частности метан. Из него в основном и состоит природный газ, который используется для обогрева домов и нагревания воды. На протяжении нескольких тысячелетий люди используют энергию ветра для пере­движения парусных судов и вращения ветряных мельниц. Ветер также может произ­водить электричество и перекачивать воду.

Единицы измерения энергии и мощности

Для измерения количества энергии употребляется специальная единица - джоуль (Дж). Тысяча джоулей составля­ют один килоджоуль (кДж). Обыкновенное яблоко (около 100 г) содержит 150 кДж химической энергии. В 100 г шоколада содержится 2335 кДж. Мощность - это количество энергии, используемой за единицу времени. Мощность измеряется в ваттах (Вт). Один ватт равен одному джоулю за секунду. Чем больше энергии за определенное время произ­водит тот или иной механизм, тем боль­ше его мощность. Лампочка мощностью в 60 Вт использует 60 Дж в секунду, а лампочка в 100 Вт использует за секунду 100 Дж.

Коэффициент полезного действия

Любой механизм потребляет энергию од­ного вида (например, электрическую) и превращает ее в энергию другого вида. Коэффициент полезного действия (КПД) механизма тем больше, чем большая часть потребляемой энергии превращается в необходимую энергию. КПД почти всех автомобилей невысок. В среднем автомобиль преобразует лишь 15% химической энергии бензина в кинетическую энергию. Вся остальная энергия превращается в тепло. КПД флуоресцентных ламп выше КПД обычных электрических лампочек, поскольку во флуоресцентных лампах больше электричества превращается в свет и меньше уходит на производство тепла.

Энергия (от греческого energeia действие, деятельность ) - общая мера (количественная оценка) различных форм движения материи, рассматриваемых в физике.

Согласно представлениям физической науки, энергия - это способность тела или объекта совершать работу. Для количественной характеристики качественно различных форм движения и соответствующих им взаимодействий введены различные виды энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механической, электрической, электромагнитной, тепловой, химической, ядерной и т.д.

Кинетическая энергия – мера механического движения, равная для твердого тела половине произведения массы тела на квадрат ее скорости. К ней относят механическую энергию движения частицы или тела, тепловую энергию, ядерную энергию и т.д.

Если энергия - результат изменения взаимного расположения частиц системы и их положения по отношению к другим телам, то она называется потенциальной. К ней относят энергию масс, притягивающихся по закону всемирного тяготения, химическую энергию, энергию положения однородных частиц, например, энергию упругого деформированного тела и т.п. .

Механическая энергия – энергия механического движения и взаимодействия тел или их частей. Механическая энергия системы тел равна сумме кинетической и потенциальной энергий этой системы. Она проявляется при взаимодействии, движении отдельных тел или частиц.

К ней относят энергию поступательного движения или вращения тела, энергию деформации при сгибании, растяжении, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и технологических .

Тепловая энергия - энергия хаотического поступательного и вращательного движения молекул вещества. Для твердого тела это энергия колебания атомов в молекулах, находящихся в узлах кристаллической решетки.

Тепловая энергия возникает только в результате превращения других видов энергии, например, при сжигании различных видов топлив их химическая энергия переходит в тепловую. Она применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия - энергия упорядоченно движущихся по замкнутой электрической цепи заряженных частиц или тел (электронов, ионов).

Электрическая энергия применяется для получения механической энергии, тепловой энергии или любой другой потребной энергии.

Химическая энергия - это энергия, "запасенная" в атомах веществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой энергии при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую энергию в гальванических элементах и аккумуляторах .

Ядерная энергия – внутренняя энергия атомного ядра, связанная с движением и взаимодействием образующих ядро нуклонов. Она выделяется в результате цепной ядерной реакции деления тяжелых ядер (ядерная реакция) или при синтезе легких ядер (термоядерная реакция). В ядерной энергетике пока используется только первый способ, т.к. использование второго связано с нерешенной еще проблемой осуществления управляемой термоядерной реакции.

Гравитационная энергия - энергия взаимодействия (притяжения) между любыми двумя телами и определяемая их массами. Она особенно ощутима в космическом пространстве. В земных условиях, это, например, энергия, которую "запасает" тело, при его подъеме на определенную высоту над поверхностью Земли.