Закон Мура и его перспективы. Экспансия закона мура

Количество транзисторов на одном кристалле достигает миллиардов штук. Естественный способ их использовать – строить многопроцессорные системы. Для таких компаний как Intel вопрос создания многопроцессорных систем – это вопрос существования.

Г. Мур (G. Moor – создатель Intel) на основе развития технологии в компа

нии Intel в 1965 году выдвинул следующее положение, которое сейчас называ-

ют законом Мура:

Каждые 2 года количество транзисторов на кристалле удваивается

Этот закон и с некоторыми колебаниями сохраняется длительное время.

Число транзисисторов на кристалле увеличится в такой степени, что это позво-

ляет создавать многоядерные процессоры (МЯП), в которых на одном кристал-

ле размещены сотни и тысячи ядер, каждое из которых является полноценным

процессором.

Считается, что нанотехнологии начинаютя со 100 нм. Таким образом, можно сказать, что современные микропроцессоры – это область нанотехнологий.

До минимального размера порядка 10 нм транзистор сохраняет свои пере-

ключательные и усилительные свойства, что полностью определяет путь разви-

тия кремниевой наноэлектроники вплоть до 2020 г. Ниже 10 нм кремний теря-

ет проводимость. В диапазоне размеров 5-0.5 нм наступает эра мезоскопических структур и приборов. Мезоскопические структуры - электронные при-

боры, размеры активной области которых сопоставимы с параметрами электро-

на. При размерах 0.5 нм и менее - эра квантовых кристаллов.

Графен – это одиночный плоский лист, состоящий из атомов углерода, образующих решётку из шестиугольных ячеек. Нанотрубки состоят из тех же шестиугольных ячеек, имеют средний диаметр около 1 нм и длину до нескольких сантиметров. Но отдельный транзистор – это не процессор. Поэтому квантовые компьютеры могут оказаться ближе по времени, чем мезоскопические структуры.

Вопросы для самоконтроля

    В чем суть параллелизм независимых ветвей?

    Сформулируйте закон Амдала.

    Закон Мура и его перспективы.

Лекция 4. Основные этапы развития параллельной обработки

Идея параллельной обработки возникла одновременно с появлением первых вычислительных машин. В начале 50-х гг. американский математик Дж. Фон Нейман предложил архитектуру последовательной ЭВМ, которая приобрела классические формы и применяется практически во всех современных ЭВМ. Однако фон Нейман разработал также принцип построения процессорной матрицы, в которой каждый процессор был соединен с четырьмя соседними.

D825. Одной из первых полномасштабных многопроцессорных систем явилась система D825 фирмы “BURROUGHS”. Начиная с 1962 г. было выпущено большое число экземпляров и модификаций D825. Выпуск первых многопроцессорных систем, в частности D825, диктовался необходимостью получения не высокого быстродействия, а высокой живучести ЭВМ, встраиваемых в военные командные системы и системы управления. С этой точки зрения параллельные ЭВМ считались наиболее перспективными. Система D825 содержала до четырех процессоров и 16 модулей памяти, соединенных матричным коммутатором, который допускал одновременное соединение любого процессора с любым блоком памяти.

Практическая реализация основных идей параллельной обработки началась только в 60-х гг. 20 - го столетия. Это связано с появлением транзистора, который позволил строить машины, состоящие из большого количества логических элементов, что принципиально необходимо для реализации любой формы параллелизма.

CRAY. Основополагающим моментом для развития конвейерных ЭВМ явилось обоснование академиком С.А. Лебедевым в 1956 г. метода, названного

“принципом водопровода” (позже он стал называться конвейером ). Прежде все-

го был реализован конвейер команд, на основании которого практически одно-

временно были построены советская ЭВМ БЭСМ-6 (1957-1966 гг., разработка

Института точной механики и вычислительной техники АН СССР), и англий-

ская машина ATLAS (1957-1963 гг.). Конвейер команд предполагал наличие

многоблочной памяти и секционированного процессора, в котором на разных

этапах обработки находилось несколько команд.

Следующим заметным шагом в развитии конвейерной обработки, реализо

ванном в ЭВМ CDC-6600 (1964 г.), было введение в состав процессора не-

скольких функциональных устройств, позволяющих одновременно выполнять

несколько арифметико-логических операций: сложение, умножение, логические операции.

В конце 60-х гг. был введен в использование арифметический конвейер , который нашел наиболее полное воплощение в ЭВМ CRAY-1 (1972-1976 гг.).

Арифметический конвейер предполагает разбиение цикла выполнения арифме-

тико-логической операции на ряд этапов, для каждого из которых отводится

собственное оборудование. Таким образом, на разных этапах обработки нахо-

дится несколько чисел, что позволяет производить эффективную обработку

вектора чисел.

Сочетание многофункциональности, арифметического конвейера для каж

дого функционального блока и малой длительности такта синхронизации по-

зволяет получить быстродействие в десятки и сотни миллионов операций в се-

кунду. Такие ЭВМ называются супер ЭВМ.

ILLIAC-IV. Идея получения сверхвысокого быстродействия в первую очередь связывалась с процессорными матрицами (ПМ). Предполагалось, что,

увеличивая в нужной степени число процессорных элементов в матрице, можно

получить любое заранее заданное быстродействие.

Поскольку в 60-е гг. логические схемы с большим уровнем интеграции от

сутствовали, то напрямую реализовать принципы функционирования процес-

сорной матрицы, содержащей множество элементарных процессоров, не пред-

ставлялось возможным. Поэтому для проверки основных идей строились одно-

родные системы из нескольких больших машин. Так, в 1966 г. была построена

система Минск-222, разработанная Институтом математики Сибирского отде-

ления АН СССР и минским заводом ЭВМ им. Г.К.Орджоникидзе. Система со-

держала до 16 соединенных в кольцо ЭВМ Минск-2. Для нее было разработано

специальное математическое обеспечение.

Другое направление в развитии однородных сред, основанное на построе-

нии процессорных матриц, состоящих из крупных процессорных элементов с

достаточно большой локальной памятью, возникло в США и связано с именами

Унгера, Холланда, Слотника. Была создана ЭВМ ILLIAC-IV (1966-1975 гг.), ко-

торая надолго определила пути развития процессорных матриц. В машине ис-

пользовались матрицы 8×8 процессоров, каждый с быстродействием около 4

млн оп/с и памятью 16 кбайт. Для ILLIAC-IV были разработаны кроме Ассемб-

лера еще несколько параллельных языков высокого уровня. Особенно ценным

является опыт разработки параллельных алгоритмов вычислений, определив-

ший области эффективного использования подобных машин.

T ранспьютер . Совершенствование микроэлектронной элементной базы,

появление в 80-х годах БИС и СБИС позволили разместить в одной микросхеме

процессор с 4-мя внешними связями, который получил название транспьютер .

Теперь стало возможным строить системы с сотнями процессоров.

пошло широким потоком. Сначала строились монолитные многопроцессорные

системы, для которых все разрабатывалось специально для конкретной систе-

мы: элементная база, конструктивы, языки программирования, операционные

системы. Затем оказалось много дешевле строить вычислительные кластеры на

основе промышленные средства, появились многояденые процессора, Грид,

квантовые компьютеры.

Некоторые этапы развития параллельных ЭВМ качественно можно представить следующей таблицей:

НАЗВАНИЕ ЭВМ

ПРОГРАММЫ

D825 - одна из первых многопроцессорных систем

Доказана возможность построения многопроцессорных систем

Первая ОС для многопроцессорных систем - ASOR

Матричный процессор ILLIAC IV

Реализована ОКМД

Параллельный язык

Векторно- конвейерная ЭВМ CRAY

Предложены конвейерные вычисления

Предложен ЯВУ векторного типа

Транспьютер Т414

Разработан процессор на кристалле со связями для мультисистем

Язык описания параллелизма OCCAM

Кластер Beowulf

Сборка на серийном оборудовании

Использованы обыч

ные сетевые ОС

Неограниченная возможность расширения

GlobusToolkit, gLite

Многоядерные про-

Разработаны МЯ процессоры с общей и индивидуальной памятью

OpenMP и MPI. Нужны новые разработки

Квантовый компью-

тер Orion компании

Кубит, эспоненциальная скорость за счет суперпозиции

Алгоритмы Шора,

Гровера. Языки моделирования

Вопросы для самоконтроля.

    Основные этапы развития параллельной обработки. D825

    Основные этапы развития параллельной обработки. CRAY.

    Основные этапы развития параллельной обработки. ILLIAC-IV.

    Некоторые этапы развития параллельных ЭВМ.

Наверное, многие из вас задавали себе ряд вопросов: почему быстрые процессоры появляются только сегодня? Какие процессоры появятся завтра, и от чего это зависит? Почему современные процессоры сильно греются? В данной статье мы постараемся ответить на все эти вопросы и обрисовать некоторые перспективы.
Процессоры - это сложные устройства, базирующиеся на транзисторах . Транзистор является мельчайшим вычислительным элементом, который можно сравнить с краном: если кран открыт, то вода льется, если закрыт - то нет. Используя комбинацию множества таких "кранов", мы можем создавать сложные логические схемы. Современные процессоры состоят из миллионов транзисторов, в то время как первые модели насчитывали всего несколько тысяч (эволюцию процессоров вы можете проследить по соответствующей таблице).
В 1965 году Гордон Мур , один из основателей компании Intel , публикует в журнале Electronics статью. Впоследствии эта статья стала легендарной, а сделанное в ней предположение получило название "закона Мура". Следует отметить, что закон Мура является наблюдением - то есть когда-то он может перестать выполняться. Но вот уже почти 40 лет закон Мура работает. К сожалению, автор дал запутанную и длинную формулировку этого закона, поэтому мы перефразируем ее так: "каждые два года число транзисторов на процессорах, которые выгодно производить, удваивается ". Чтобы понять ее важность и разобраться в последствиях, давайте представим себя в роли производителя процессоров.

Создаем свой процессор
Чипы вырезаются из кремниевых подложек - круглых пластин, которые на современных заводах достигли диаметра 300 мм.
В процессе производства на пластинах вытравляются транзисторы. Однако также возникают и дефекты - они на схематическом изображении подложки показаны желтыми точками. Процессоры с дефектными участками придется выкинуть. На нашем примере из подложки получается 16 процессоров. При этом 4 процессора пойдут в мусорное ведро, поэтому доля выхода годных чипов составляет 75%, а убытки за счет дефектных процессоров нам придется компенсировать повышением цены на оставшиеся 12 чипов. Как же сделать так, чтобы чипы стоили дешевле - чтобы наше производство было рентабельным?

Способ I
Улучшаем технологический процесс производства
Когда производитель процессоров запускает новый завод, он указывает два параметра: диаметр подложки и размер элемента. Как вы понимаете, чем больше диаметр подложки, тем больше мы сможем получать из нее процессоров . Однако здесь есть ограничивающий фактор: число дефектов около края подложки выше, чем в центре. Совершенствование технологии подложек направлено на увеличение "благоприятной зоны" в центре. Как только производитель этого достигает, он может переходить на подложки большего диаметра. Так, процессоры для первого IBM PC (1981 г.) производились из 50-мм подложек, в то время как на современных заводах используются 300-мм подложки (Intel) и 200-мм (AMD).
Под размером элемента понимают минимальный размер детали (транзистора), которую оборудование завода может вытравить на поверхности подложки. Так, под фразой "новые процессоры Prescott перешли на 0,09-мкм технологический процесс" следует понимать то, что размер минимального элемента завода по производству Prescott составляет 0,09 микрометра (миллионная часть метра). Процессоры первого IBM PC имели размер элемента 3 мкм, процессор Pentium - 0,8 мкм, а современные Pentium 4 - 0,09 мкм. Соответственно, чем меньше размер элемента, тем меньшую площадь будет занимать процессор и тем больше процессоров мы сможем получить из одной подложки .
Итак, поднять эффективность производства можно с помощью увеличения диаметра подложки или уменьшения размера элемента - но и тот, и другой способы являются накладными, поскольку предусматривают полную замену оборудования на заводе. Есть ли еще варианты?

Способ II
Уменьшаем размер чипов
Инженеры нашего завода создали микропроцессор, который будет состоять из 100 миллионов транзисторов. Так получилось, что на мощностях нашего завода из одной подложки можно вырезать 16 чипов по 120 миллионов транзисторов. То есть мы можем разместить весь процессор на одном чипе, который можно назвать "сложным", поскольку он будет содержать большое число транзисторов. Но при этом процент выхода годных кристаллов составляет 75%. Мы знаем, что можно достичь лучших результатов. Давайте разобьем наш процессор на 4 отдельных чипа, по 25 миллионов транзисторов каждый.
При этом из подложки можно вырезать 64 чипа, которые могут содержать до 30 миллионов транзисторов.
По-прежнему дефектными оказываются 4 чипа, но доля выхода годных чипов возросла с 75% до 94% - значимое улучшение.
Недостатком подобного дизайна будет вы

Переходим
на 4 чипа.
сокая стоимость упаковки чипов - ведь нам нужно будет упаковать в один цельный процессор четыре чипа. Фактически, увеличение стоимости упаковки съедает весь тот выигрыш в стоимости, который мы получили, увеличив долю выхода годных кристаллов с 75% до 94%.
Существует ли здесь "золотая середина"? Предположим, что наши инженеры ее нашли: если мы будем получать с одной пластины 36 чипов по 53 миллиона транзисторов. Тогда мы можем сделать наш процессор двухчиповым, по 50 миллионов транзисторов в каждом чипе. При этом уровень выхода годных кристаллов составит 89% - лучше, чем в случае с 16 чипами, но хуже, чем при получении 64 чипов. Кстати, процессоры Pentium II и Pentium III состояли не из одного чипа - у них был внешний кэш L2. Тогда процессор вместе с кэшем упаковывались в отдельный картридж.
Переходим
на 2 чипа.

Подведем итог: при данной плотности расположения дефектов на пластине оптимальное число транзисторов, при котором достигается минимальная себестоимость производства кристаллов, составляет 53 миллиона транзисторов на процессор. Это число и фигурирует в законе Мура. Как предсказывал Гордон Мур в своей статье, оптимальное число транзисторов будет
удваиваться каждые два года.
Оптимальное число транзисторов зависит от следующих факторов (в порядке уменьшения влияния):
1. размер элемента;
2. диаметр подложки;
3. среднее число дефектов на квадратный сантиметр;
4. затраты на упаковку чипов.
Закон Мура очень важен, поскольку он описывает многие события в мире процессоров. К тому же из закона Мура выводятся интересные следствия.
Следствия закона Мура
Для лучшего визуального представления разделим каждый процессор, в свою очередь, на блоки. За основу возьмем наш процессор в 100 миллионов транзисторов и разделим его на 36 блоков. При этом каждый участок будет состоять примерно из 3 миллионов транзисторов.
Увеличиваем функциональность
Продолжая пример, приведенный выше, мы построили второй завод, который имеет ту же плотность дефектов и размер подложки, однако мы смогли значительно снизить размер транзистора, увеличив плотность расположения транзисторов в 2 раза. Если взять пример оптимального разбиения подложки на 36 кристаллов, то тогда каждый кристалл сможет вмещать 106 миллионов транзисторов - то есть наш процессор со 100 миллионами транзисторов теперь легко поместится на один кристалл, и теперь мы будем изготавливать процессор из одного чипа, экономя на упаковке. Если обратиться к истории, то процессоры Intel Pentium III сначала изготавливались в многочиповом варианте, с внешним кэшем 512 Кбайт (ядро Katmai ), а затем появились одночиповые варианты Pentium III с кэшем 256 Кбайт на кристалле процессора (ядро Coppermine ).
Но не будем на этом останавливаться. Построим третий завод, у
которого размер элемента еще меньше. Поскольку наш процессор уже полностью входит на кристалл, можно расширить его возможности, увеличив функциональность. Так произошло при переходе от 386 процессора к 486 : тогда на кристалл был добавлен сопроцессор для работы с плавающ ей запятой, до этого существующий в виде отдельного чипа. Затем на кристалле процессора появился кэш сначала первого (486), а затем и второго и третьего уровней. С переходом ядра Willamette Pentium 4 на Northwood мы стали свидетелями увеличения на кристалле процессора кэша второго уровня. Опять же, недавно вышедший Prescott с 0,09-мкм технологическим процессом вновь получил увеличение кэша L2 до 1 Мб.
Добавление новых функций (сопроцессор, кэш и т.д.) непосредственно на кристалл процессора позволило ощутимо увеличить его производительность, не говоря о снижении затрат на упаковку. Так что закон Мура действительно можно связать с вычислительной мощностью.
Уменьшаем размер кристалла
При переходе на меньший размер элемента вместо добавления новых функций на кристалл процессора мы можем оставить все как есть и просто уменьшить площадь ядра.

Обратите внимание на два столбца слева. Первый показывает импульсы тактовой частоты (мегагерцы), второй - тепловыделение (ватты). Уменьшение площади кристалла дает очень хороший эффект: снижение тепловыделения (немало этому помогает и то, что переход на меньший размер элементов позволяет понизить напряжение питания). В результате процессор
будет меньше греться, кулер будет работать с меньшими оборотами вентилятора - то есть тише.
Тепловыделение также связано с тактовой частотой процессора. Как знают любители разгона, повышение тактовой частоты приводит к увеличению выделяемого тепла. Чтобы уменьшить размер кристалла чипа, не снижая тепловыделение, можно поднять тактовую частоту так, чтобы количество выделяемого тепла осталось прежним.

Подведем итог. Снижение размера элемента дает нам две возможности: одна -добавить новые функции на кристалл, а вторая - уменьшить размер кристалла, в то же время сохраняя прежний набор функций. Что интересно, вторая возможность распадается
еще на два варианта: увеличение тактовой частоты процессора - с повышением тепловыделения, сохранение тактовой частоты на прежнем уровне - со снижением тепловыделения.Практические выводы
Итак, мы представили работу завода по производству процессоров. Но как работают настоящие заводы? Выполняется ли в реальности закон Мура вместе со следствиями из него?

На самом деле размер кристалла процессора с 1970 года рос со скоростью примерно 7% в год (несмотря на уменьшение размера транзисторов). Связано это с тем, что при выборе между добавлением новых функций на чип или уменьшением его размера и тепловыделения разработчики процессоров чаще всего выбирали первое. На определенных линейках процессоров, типа Pentium III или G4 , к примеру, уменьшение размера элемента часто приводило к уменьшению тепловыделения. Но когда разработчики процессоров принимались за продукт следующего поколения (например, Pentium 4), они с самого начала думали не о ваттах, а о производительности. А
повышение производительности всегда означало нахождение способа использования возросшего числа транзисторов - а не их отсечение в угоду уменьшению площади.
С новым дизайном процессоров часто случается ситуация, когда инженеры пытаются добавить так много функций на чип, что размер ядра значительно возрастает, несмотря на уменьшение размера элемента. К примеру, при разработке Pentium 4 планировалось сразу же оснастить процессор очень большим кэшем. Но 0,18-мкм технология не позволила это сделать - чип получался слишком крупным и дорогим. Поэтому первый Pentium 4 вышел с кэшем L2 в 256 Кбайт.
Тактовые частоты процессоров за последние два десятилетия выросли на несколько порядков. Если раньше процессоры работали на частоте 5-10 МГц (8086 ), то к концу 2004 года частота вырастет в сотни раз - до 4 ГГц (Pentium 4). Рост тактовых частот, опять же, приводил к увеличению тепловыделения. Кстати, тактовые частоты тоже удваиваются в среднем за два года - аналогично числу транзисторов в законе Мура.

Практический итог таков - увеличивается площадь кристаллов, повышается тактовая частота. Поэтому повышается и тепловыделение. Если раньше процессоры работали вообще без кулеров, то сегодня кулер просто необходим - без него процессор сгорит (или, в лучшем случае, откажется работать).
Будущее закона Мура
Компания Intel заявляет о том, что закон Мура должен выполняться до 2010 года. Про дальнейшее его развитие говорить пока рано. Попытаемся спрогнозировать, к каким последствиям приведет дальнейшее выполнение закона Мура.
Первое последствие заключается в высоком тепловыделении. К сожалению, тепловыделение нельзя увеличивать бесконечно. В какой-то момент потребуется еще более сильное охлаждение (водяное или компрессорное). Эффективное охлаждение - настоящая "головная боль"
современной индустрии. А производители чипов пытаются найти различные подходы, направленные на снижение тепловыделения своих продуктов. Возможно, процессор будет разбит на несколько частей - либо все большую популярность будут приобретать двухпроцессорные системы.
Следствием закона Мура является непрерывное повышение производительности. Однако многие пользователи замечают, что для большинства задач хватило бы и Pentium III 1 ГГц. Поэтому Intel сегодня тратит немало усилий на популяризацию новых задач, которые могли бы в полной мере нагрузить новые мощные процессоры. Яркий пример таких задач - компьютерные игры. Возможно, в недалеком будущем мы столкнемся с ситуацией, когда игры станут "продавать" процессоры, а не только графические
ускорители.
Возможно, станут очень популярны распределенные вычисления. Вместо монструозного центрального процессора на 500 миллионов транзисторов будет лучше, к примеру, распределить эти транзисторы между настольным компьютером, ноутбуком, КПК и другими типами устройств. Более того, все эти 500 миллионов транзисторов должны быть максимально дешевыми и потреблять минимум энергии. Это близко к оригинальному видению Мура - дешевым и повсеместным вычислениям.
Третье следствие - проблемы, связанные со смешением различных типов цепей на одном кристалле. Мобильные компьютеры требуют, чтобы на один кристалл были интегрированы все функции, включая память, процессор и множество вариантов беспроводной связи. Некоторые производители решают проблему "в лоб", стараясь интегрировать их на кристалл любым способом, другие же пытаются найти новые технологии упаковки, которые позволят комбинировать множество чипов с множеством функций в одном модуле.

Эволюция процессоров и закон Мура
Процессор
  • Процессоры ,
  • Физика
    • Перевод

    Примечание. Дата публикации статьи: 26.12.2015. За прошедшее время некоторые тезисы автора подтвердились реальными фактами, а некоторые оказались ошибочными - прим. пер.

    В последние 40 лет мы видели, как скорость компьютеров росла экспоненциально. У сегодняшних CPU тактовая частота в тысячу раз выше, чем у первых персональных компьютеров в начале 1980-х. Объём оперативной памяти на компьютере вырос в десять тысяч раз, а ёмкость жёсткого диска увеличилась более чем в сто тысяч раз. Мы так привыкли к этому непрерывному росту, что почти считаем его законом природы и называем законом Мура. Но есть пределы этому росту, на которые указал и сам Гордон Мур . Мы сейчас приближаемся к физическому пределу, где скорость вычислений ограничена размером атома и скоростью света.

    Канонические часы Тик-так от Intel начали пропускать такты то здесь, то там. Каждый «тик» соответствует уменьшению размера транзисторов, а каждый «так» - улучшение микроархитектуры. Нынешнее поколение процессоров под названием Skylake - это «так» с 14-нанометровым технологическим процессом. Логически, следующим должен стать «тик» с 10-нанометровым техпроцессом, но Intel теперь выдаёт «циклы обновления» после каждого «так». Следующий процессор, анонсированный на 2016 год, станет обновлением Skylake, всё ещё на 14-нанометровом техпроцессе . Замедление часов Тик-так - это физическая необходимость, потому что мы приближаемся к лимиту, где размер транзистора составляет всего несколько атомов (размер атома кремния - 0,2 нанометра).

    Другое физическое ограничение - это скорость передачи данных, которая не может превышать скорость света. Требуется несколько тактовых циклов, чтобы данные попали из одного конца CPU в другой конец. По мере того как микросхемы становятся крупнее с большим и большим количеством транзисторов, скорость начинает ограничиваться самой передачей данных на микросхеме.

    Технологические ограничения - не единственная вещь, которая замедляет эволюцию процессоров. Другим фактором является ослабление рыночной конкуренции. Крупнейший конкурент Intel, компания AMD, сейчас больше внимания уделяет тому, что она называет APU (Accelerated Processing Units), то есть процессорам меньшего размера с интегрированной графикой для мини-ПК, планшетов и других ультра-мобильных устройств. Intel теперь завладела подавляющей долей рынка процессоров для высококлассных ПК и серверов. Свирепая конкуренция между Intel и AMD, которая несколько десятилетий толкала вперёд развитие процессоров x86, практически исчезла.

    Рост компьютерной мощи в последние годы идёт не столько от увеличения скорости вычислений, сколько от усиления параллелизма. В современных микропроцессорах используется три типа параллелизма:

    1. Одновременное выполнение нескольких команд с изменением их очерёдности.
    2. Операции Single-Operation-Multiple-Data (SIMD) в векторных регистрах.
    3. Несколько ядер CPU на одной микросхеме.
    У этих типов параллелизма нет теоретических лимитов, но есть реальные практические. Выполнение команд с изменением их очерёдности ограничено количеством независимых команд в программном коде. Вы не можете одновременно выполнить две команды, если вторая команда ждёт результат выполнения первой. Нынешние CPU обычно могут одновременно выполнять четыре команды. Увеличение этого количества не принесёт много пользы, потому что процессору будет сложно или невозможно найти в коде больше независимых команд, которые можно выполнить одновременно.

    В нынешних процессорах с набором инструкций AVX2 есть 16 векторных регистров по 256 бит. Грядущий набор инструкций AVX-512 даст нам 32 регистра по 512 бит, и вполне можно ожидать в будущем расширения на 1024- или 2048-битные векторы. Но эти увеличения векторных регистров будут давать всё меньший эффект. Немногие вычислительные задачи имеют достаточный встроенный параллелизм, чтобы извлечь выгоду из этих векторов большего размера. 512-битные векторные регистры соединяются набором регистров маски, у которых ограничение на размер 64 бита. 2048-битные векторные регистры смогут хранить 64 числа одинарной точности по 32 бита каждое. Можно предположить, что Intel не планирует делать векторные регистры более чем 2048 бита, поскольку они превзойдут ограничения 64-битных регистров маски.

    Многочисленные ядра CPU дают преимущество только если имеется множество критических к скорости одновременно работающих программ или если задача делится на многочисленные независимые потоки. Количество потоков, на которые можно с выгодой разделить задачу, всегда ограничено.

    Производители без сомнения постараются делать всё более и более мощные компьютеры, но какова вероятность, что эту компьютерная мощь можно будет использовать на практике?

    Существует четвёртая возможность параллелизма, которая пока не используется. В программах обычно полно веток if-else, так что если CPU научатся предсказывать, какая из веток сработает, то можно было бы поставить её на выполнение. Можно выполнять одновременно сразу несколько веток кода, чтобы избежать потери времени, если предсказание окажется неправильным. Конечно, за это придётся заплатить повышенным энергопотреблением.

    Другое возможное улучшение - разместить программируемое логическое устройство на микросхеме процессора. Подобная комбинация сейчас является обычным делом для так называемых FPGA, которые используются в продвинутой аппаратуре. Такие программируемые логические устройства в персональных компьютерах можно использовать для реализации функций, специфических для конкретных приложений, для задач вроде обработки изображений, шифрования, сжатия данных и нейросетей.

    Полупроводниковая индустрия экспериментирует с материалами, которые можно использовать вместо кремния. Некоторые полупроводниковые материалы III-V способны работать на более низком напряжении и на более высоких частотах, чем кремний , но они не делают атомы меньше или свет медленнее. Физические ограничения по-прежнему в силе.

    Когда-нибудь мы можем увидеть трёхмерные многослойные чипы. Это позволит уплотнить схемы, уменьшить расстояния, а следовательно, и задержки. Но как эффективно охлаждать такой чип, когда энергия распространяется повсюду внутри него? Потребуются новые технологии охлаждения. Микросхема не сможет передавать питание на все схемы одновременно без перегрева. Ей придётся держать отключенными большинство своих частей основную часть времени и подавать питание в каждую часть только во время её использования.

    В последние годы скорость CPU увеличивается быстрее, чем скорость RAM, которая часто становится серьёзным узким местом. Без сомнения, в будущем мы увидим много попыток увеличить скорость оперативной памяти. Вероятной разработкой будет поместить оперативную память на одну микросхему с CPU (или хотя бы в один корпус), чтобы уменьшить расстояние для передачи данных. Это будет полезное использование трёхмерных чипов. Вероятно, RAM будет статического типа, то есть на каждую ячейку памяти будет подаваться питание только когда к ней осуществляется доступ.

    Intel также снабжает рынок суперкомпьютеров для научного использования. У процессора Knight"s Corner - до 61 ядра на одной микросхеме. Он имеет слабое соотношение производительность/цена, но его ожидаемый наследник Knight"s Landing должен быть лучше по этому показателю. Он вместит до 72 ядер на чипе и сможет выполнять команды с изменением их очерёдности. Это маленький нишевый рынок, но Intel может повысить свой авторитет.

    Сейчас лучшие возможности по улучшению производительности, как я думаю, с программной стороны. Разработчики ПО быстро нашли применение экспоненциальному росту производительности современных компьютеров, который произошёл благодаря закону Мура. Программная индустрия стала использовать её, а также начала использовать более и более продвинутые инструменты разработки и программные фреймворки. Эти высокоуровневые инструменты разработки и фреймворки сделали возможным ускорить разработку ПО, но за счёт потребления большего количества вычислительных ресурсов конечным продуктом. Многие из сегодняшних программ довольно расточительны в своём чрезмерном потреблении аппаратной вычислительной мощности.

    На протяжении многих лет мы наблюдали симбиоз между аппаратной и программной индустриями, где последняя производила всё более продвинутые и ресурсоёмкие продукты, которые подталкивали пользователей покупать всё более мощное оборудование. Поскольку скорость роста аппаратных технологий замедлилась, а пользователи перешли на маленькие портативные устройства, где ёмкость батареи важнее, чем производительность, программной индустрии теперь придётся изменить курс. Ей придётся урезать ресурсоёмкие инструменты разработки и многоуровневый софт и разрабатывать программы, не так набитые функциями. Сроки разработки увеличатся, но программы станут потреблять меньше аппаратных ресурсов и быстрее работать на маленьких портативных устройствах с ограниченным ресурсом батареи. Если индустрия коммерческого ПО сейчас не изменит курс, то может уступить долю рынка более аскетичным продуктам open source.

    Закон Мура

    По поводу эффектов, обусловленных законом Мура, в журнале «В мире науки » как-то было приведено такое интересное сравнение:

    «Если бы авиапромышленность в последние 25 лет развивалась столь же стремительно, как промышленность средств вычислительной техники, то сейчас самолёт Boeing 767 стоил бы 500 долл. и совершал облёт земного шара за 20 минут, затрачивая при этом пять галлонов (~18,9 л) топлива. Приведенные цифры весьма точно отражают снижение стоимости, рост быстродействия и повышение экономичности ЭВМ».

    В 2007 году Мур заявил, что закон, очевидно, скоро перестанет действовать из-за атомарной природы вещества и ограничения скорости света .

    Одним из физических ограничений на миниатюризацию электронных схем является также Принцип Ландауэра , согласно которому логические схемы, не являющиеся обратимыми, должны выделять теплоту в количестве, пропорциональном количеству стираемых (безвозвратно потерянных) данных. Возможности по отводу теплоты физически ограничены .

    Следствия и ограничения

    Параллелизм и закон Мура

    В последнее время, чтобы получить возможность задействовать на практике ту дополнительную вычислительную мощность, которую предсказывает закон Мура, стало необходимо задействовать параллельные вычисления . На протяжении многих лет, производители процессоров постоянно увеличивали тактовую частоту и параллелизм на уровне инструкций, так что на новых процессорах старые однопоточные приложения исполнялись быстрее без каких-либо изменений в программном коде. Сейчас по разным причинам производители процессоров предпочитают многоядерные архитектуры, и для получения всей выгоды от возросшей производительности ЦП программы должны переписываться в соответствующей манере. Однако, по фундаментальным причинам, это возможно не всегда.

    См. также

    • Закон гиперболического роста численности населения Земли

    Примечания

    Ссылки

    • Закон Мура Воплощается в жизнь благодаря инновациям Intel

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Закон Мура" в других словарях:

      Увеличение количества транзисторов по времени. Количество удваивается каждые 2 года Закон Мура эмпирическое наблюдение, сделанное в 1965 году (через шесть лет после изобретения интегральной схемы), в процессе подготовки выступления Гордоном… … Википедия

      Закон Мура - Moore s Law Закон Мура Эмпирическое наблюдение, сделанное в 1965 году (через шесть лет после изобретения интегральной схемы) одним из основателей корпорации «Intel» Гордоном Муром: число транзисторов на кристалле будет удваиваться каждые 24… … Толковый англо-русский словарь по нанотехнологии. - М.

      Законом Гроша называют следующее замечание о производительности компьютеров, сделанное Хербом Грошем в 1965 году: Существует фундаментальное правило, которое я скромно называю законом Гроша: получение добавочной экономии есть только квадратный… … Википедия

      Ускорение программы с помощью параллельных вычислений на нескольких процессорах ограничено размером последовательной части программы. Например, если можно распараллелить 95% программы, то теоретически максимальное ускорение составит 20×, невзирая … Википедия

      Это полушутливое высказывание, популяризированное Никлаусом Виртом в 1995 году. Звучит оно так: … Википедия

      У этого термина существуют и другие значения, см. Мур. Гордон Мур Gordon Moore … Википедия

      Гордон Мур Gordon Moore основатель Имя при рождении: Gordon Earle Moore Дата рождения: 3 январ … Википедия

      - (англ. International Technology Roadmap for Semiconductors, ITRS) набор документов, выпускаемый группой экспертов полупроводниковой промышленности. Эти эксперты являются представителями спонсирующих организаций, которые включают в себя … Википедия

      Intel - (Интел) Компания Intel, история компании, деятельность компании Информация о компании Intel, история компании, деятельность компании Содержание Содержание Core Описание Intel Продукция фирмы Intel Технические характеристики Преимущества и… … Энциклопедия инвестора

      У этого термина существуют и другие значения, см. Будущее (значения). Антонио Сант’Элиа Урбанистический рисунок в футуристическом стиле Будущее часть лин … Википедия

    Когда заходит речь о полупроводниковых технологиях и современных интегральных микросхемах, часто упоминают закон Мура, который в настоящее время является своеобразным хронометром полупроводниковой технологии. В этой статье мы рассмотрим, в чем суть закона Мура, а также поговорим о важных следствиях и приложениях этого гениального предсказания.

    се началось в 1965 году, то есть всего через шесть лет после изобретения первой интегральной схемы (ИС) и за три года до того, как Гордон Мур (Gordon E. Moore) стал одним из основателей корпорации Intel. В то далекое время технология производства интегральных микросхем позволяла интегрировать в одной микросхеме порядка трех десятков транзисторов, а группа ученых, возглавляемая Гордоном Муром, директором исследовательской лаборатории полупроводников корпорации Fairchild Camera and Instrument Corp (Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp), завершала разработку новых микросхем, объединяющих в себе уже 60 транзисторов. Конечно, по сегодняшним меркам, когда в одной микросхеме насчитывается несколько десятков миллионов транзисторов, 60 транзисторов кажется ничтожно малой величиной, но не будем забывать, что речь идет о становлении интегральной электроники.

    По просьбе журнала Electronics Гордон Мур написал статью, приуроченную к 35-й годовщине издания (Electronics, Vol. 38, № 8, Apr. 19, 1965). В этой статье Мура попросили сделать прогноз относительно того, как будут совершенствоваться полупроводниковые устройства в течение ближайших десяти лет. Проанализировав темпы развития полупроводниковых устройств и экономические факторы за прошедшие шесть лет, то есть начиная с 1959 года, Гордон Мур предположил, что к 1975 году количество транзисторов в одной интегральной микросхеме составит 65 тыс. Именно этот прогноз на ближайшие десять лет стал преамбулой ко всей статье.

    Фактически по прогнозу Мура количество транзисторов в одной микросхеме за десять лет должно было увеличиться более чем в 1000 раз. А это означало, что каждый год количество транзисторов в одной микросхеме должно удваиваться.

    Кроме предсказания экспоненциального роста плотности размещения транзисторов, Мур сделал и другой важный и на первый взгляд парадоксальный вывод. Сокращение размеров транзисторов должно неизбежно привести к тому, что интегральные микросхемы на их основе будут все дешевле, мощнее и доступнее. Из этого следовало, что изменится электронная отрасль в целом.

    Конечно, в 1965 году ни сам Гордон Мур, ни кто-либо другой не мог предположить, что опубликованный прогноз на ближайшие десять лет не только в точности сбудется, но и послужит основой для формулирования эмпирического правила развития всей полупроводниковой технологии на много лет вперед. Впрочем, с предсказанием Мура было не все гладко. К 1975 году рост количества элементов в одной микросхеме стал немного отставать от прогноза. Тогда Гордон Мур скорректировал период обновления до 24 месяцев, чтобы компенсировать ожидаемое увеличение сложности полупроводниковых компонентов. В конце 1980-х годов одним из руководителей корпорации Intel была внесена еще одна поправка, и прогноз Мура стал означать удвоение вычислительной производительности каждые 18 месяцев (вычислительная производительность, измеряемая в миллионах команд в секунду (MIPS), увеличивается благодаря росту количества транзисторов).

    До сих пор мы преднамеренно употребляли слова «прогноз» или «предсказание» Мура, однако в литературе чаще встречается выражение «закон Мура». Дело в том, что после опубликования упомянутой статьи в журнале Electronics профессор Карвер Мид, коллега Мура из Калифорнийского технологического института, дал этому прогнозу название «закон Мура», и оно прижилось.

    Конечно, в буквальном смысле предсказание Мура законом не является хотя бы потому, что оно не отражает природных закономерностей и не является следствием фундаментальных законов физики. Фундаментальные законы природы, такие как закон гравитации, который выражается формулой Ньютона, или законы электромагнитного поля, описываемые уравнениями Максвелла, объективны по своей природе и существуют независимо от наших знаний о них. Поэтому, говоря о законе Мура, следует еще раз подчеркнуть, что речь идет лишь об эмпирическом правиле или предсказании.

    В настоящее время термин «закон Мура» применяется также для описания следствий экспоненциального возрастания плотности размещения транзисторов в пределах одной микросхемы. О каких же следствиях закона Мура идет речь?

    Следствия закона Мура

    отя в законе Мура говорится лишь об экспоненциальном возрастании числа транзисторов на одной микросхеме, сводить все к одному этому утверждению было бы неверно. Точнее, сам факт увеличения плотности размещения транзисторов за счет сокращения их размеров сопровождается важными последствиями. Действительно, если говорить просто о количестве транзисторов в одной микросхеме, то со времени 30-транзисторных компонентов 1965 года это количество возросло на много порядков. В 1975 году количество компонентов достигло 65 тыс. К 1989 году процессор Intel i486 содержал 1,4 млн. транзисторов. А в 2002 году корпорация Intel анонсировала процессор Intel Pentium 4 на основе 0,13-микронной технологии, вмещающий 55 млн. транзисторов в одном кристалле. Скоро технология производства интегральных микросхем позволит увеличивать количество транзисторов на сотни миллионов ежегодно.

    Однако сколь впечатляющим ни был бы рост количества элементов - это только частность. Мощь и уникальность полупроводниковых компонентов состоит в том, что одновременно с увеличением количества транзисторов улучшаются почти все параметры микропроцессорной технологии, главные из которых - скорость и производительность. Так, процессор i486 работал на тактовой частоте 25 МГц. Современные процессоры Pentium 4 имеют тактовые частоты уже более 3 ГГц. Будущий процессор с миллиардом транзисторов, как ожидается, будет работать на частоте, приближающейся к 20 ГГц.

    Посмотрим на этот вопрос с другой стороны: в начале 1990-х годов для того, чтобы увеличить тактовую частоту i486 с 25 МГц до 50 МГц, понадобилось три года. Сегодня разработчики Intel наращивают тактовую частоту со скоростью 25 МГц в неделю. Главный директор Intel по технологиям Патрик Гелсингер заявил, что уже через несколько лет Intel планирует наращивать частоту процессоров со скоростью 25 МГц в день. Среди других характеристик, которые улучшаются благодаря закону Мура, - уровень интеграции, размеры, функциональные возможности, эффективность энергопотребления и надежность.

    Еще одним немаловажным следствием закона Мура являются экспоненциальное падение цен в расчете на один транзистор и соответственно непрерывный рост покупательной способности.

    Когда Гордон Мур впервые сформулировал свой закон, себестоимость одного транзистора составляла около 5 долл. Сегодня за 1 долл. можно приобрести 1 млн. транзисторов. Тот факт, что это стало возможным, является прямым следствием закона Мура: быстрое снижение себестоимости приводит к экспоненциальному росту экономической эффективности.

    Заглядывая в будущее

    а Форуме Intel для разработчиков, прошедшем весной прошлого года, главный технический директор корпорации Intel Гелсингер заявил: «Наша задача состоит сегодня не только в том, чтобы продлить жизнь закона Мура, но и в том, чтобы максимально расширить сферу его действия, распространив его и на другие области».

    Первоначально прогноз Мура был просто наблюдением за тем, как развивается индустрия микропроцессоров, этаким эмпирическим постулатом. Однако через несколько лет он стал руководящим принципом развития для всей отрасли, а теперь иначе как законом его никто и не называет. Однако, несмотря на то, что закон Мура оправдывает себя вот уже в течение почти что сорока лет, многие довольно скептически относятся к тому, что он будет действовать и в дальнейшем.

    С приводимыми ими доводами трудно не согласиться. Действительно, уже сейчас микросхемы производятся по 0,13-микронному технологическому процессу, а толщина затвора транзистора составляет всего 60 нм. Но ведь не может же уменьшение размеров транзисторов происходить до бесконечности, хотя бы в силу дискретности самой природы! Вопрос ставится так: а что будет, когда размеры затворов транзисторов достигнут атомарных слоев? Вопрос, конечно, интересный, но ответить на него в ближайшее десятилетие вряд ли кто-нибудь сможет. Впрочем, до атомарных размеров транзисторов еще далеко. Если же говорить о перспективе дальнейшего совершенствования полупроводниковой электроники в соответствии с законом Мура на ближайшие лет тридцать, то можно утверждать, что предсказанное экспоненциальное возрастание числа транзисторов на одной микросхеме сохранится.

    На весеннем Форуме Intel для разработчиков главный технический директор корпорации Intel Патрик Гелсингер поделился своими соображениями в отношении закона Мура: «Честно говоря, я часто спрашивал себя, когда же закончится действие закона Мура? Сколько мы еще сможем пользоваться его плодами? В 1980 году, когда я пришел в Intel, мы ломали головы над тем, как достичь технологической нормы производства микропроцессоров в один микрон. В 90-е годы перед нами уже стояла задача внедрить технологическую норму в одну десятую микрона, и опять она казалась нам недостижимой. А сегодня мы думаем о том, как преодолеть барьер в одну сотую микрона. Могу пообещать вам, что до моей пенсии (то есть в течение последующей четверти века) закон Мура будет действовать. Я уверен, что еще не одно десятилетие он будет руководящим принципом развития отрасли».

    Итак, в корпорации Intel считают, что в обозримой перспективе закон Мура продолжит действовать. Впрочем, чтобы сохранить экспоненциальный рост числа транзисторов на одной микросхеме завтра, необходимо уже сегодня задумываться о новых технологиях.

    Соблюдение закона Мура и реализация его предсказаний требует снижения проектной нормы - уменьшения номинального размера элементов, из которых состоит интегральная схема. За последнее десятилетие корпорация Intel уменьшила проектную норму на порядок - с одного микрона (примерно одной сотой толщины человеческого волоса) до менее чем 100 нанометров (нм), то есть до уровня, отвечающего нанотехнологиям. В предстоящее десятилетие проектная норма технологических процессов вплотную подойдет к физическим пределам, обусловленным атомной структурой, что приведет к новым проблемам, связанным с энергопотреблением, тепловыделением и поведением атомных частиц. Компания Intel уже продемонстрировала транзисторы, содержащие элементы толщиной всего в три атома.

    Чтобы продолжить действие закона Мура, исследователи Intel активно занимаются поиском и устранением различных барьеров, препятствующих дальнейшему уменьшению размеров элементов. Так, если сегодня для нанесения сложнейших рисунков, формирующих электронные схемы на полупроводниковой пластине, используется 130-нм литографическая технология, позволяющая получать транзисторы с длиной затвора 60 нм и шесть слоев медных соединений, то уже в этом году в массовое производство будет внедрен новый 90-нанометровый технологический процесс. Новый технологический процесс, представленный корпорацией Intel в августе минувшего года, предусматривает использование семи слоев медных соединений и включает целый ряд уникальных технологий. Во-первых, в нем применяются самые маленькие в мире серийно производимые КМОП-транзисторы с длиной затвора всего 50 нм. Во-вторых, это самый тонкий оксидный слой затвора среди всех когда-либо применявшихся в производстве - его толщина составляет 1,2 нм (менее пяти атомных слоев).

    Несколько позже будет внедрена в массовое производство революционная литографическая технология, находящаяся сегодня на стадии разработки. Известно, что возможности сегодняшней литографии уже практически исчерпали себя. Действительно, литография — это процесс, при котором лазер световым пучком выжигает на пластине проводники для будущего процессора, при этом луч надо очень точно сфокусировать. Проводники в процессорах становятся все тоньше, и, чтобы точно вырезать тонкие проводники, длина волны луча света должна быть в несколько раз меньше ширины проводника. Стало быть, длина волны света постепенно уходит из видимого диапазона и перемещается в диапазон более коротких ультрафиолетовых волн. Новая технология литографии, получившая название ЕUV-литографии (Extreme UltraViolet - сверхжесткое ультрафиолетовое излучение), основана на использовании ультрафиолетового излучения, что позволяет формировать рисунки с толщиной линий менее 50 нм. Здесь главная сложность заключается в том, что ультрафиолетовый свет поглощается стеклом, и никакие линзы и призмы для его точной фокусировки уже не годятся — необходимы совершенно новая техника и технология.

    В 2001 году компания Intel представила первые фотомаски стандартного отраслевого формата для EUV-литографии. С помощью разработанного ею процесса формирования рисунка удалось получить линии шириной на 30% меньше, чем для самых совершенных масок, применяемых сегодня в производстве. Корпорация Intel планирует выпустить первые процессоры с использованием EUV-технологии во второй половине нынешнего десятилетия.

    Описанные новые технологии относятся к ближайшему будущему, однако уже сейчас разрабатываются технологии, рассчитанные и на более далекую перспективу. Так, в июне 2001 года корпорация Intel объявила, что ее специалисты разработали транзисторы, содержащие структуры размером всего 20 нм. Эти новые транзисторы имеют на 30% меньшие размеры и на 25% большее быстродействие, чем созданные всего годом ранее. К концу того же года Intel преодолела еще один рубеж, изготовив самые маленькие в мире транзисторы с длиной затвора 15 нм. Именно такие крошечные транзисторы потребуются для серийных процессоров к концу текущего десятилетия.

    По мере уменьшения размеров транзисторов, увеличения плотности их размещения на подложке и повышения быстродействия компонентов потенциальными ограничительными факторами для реализации закона Мура могут стать энергопотребление и тепловыделение. Чтобы решить проблему тепловыделения, специалисты Intel исследуют как новые структуры, например транзисторы с тремя затворами, так и новые материалы, в частности напряженный кремний, позволяющие увеличить производительность при одновременном повышении эффективности использования энергии. Возможно, лучший пример - это представленный Intel в ноябре 2001 года транзистор с рабочей частотой 1 терагерц.

    Этот ключевой проект корпорации направлен на создание микроскопических «переключателей», которые меньше и быстрее существующих. В основе терагерцевого транзистора лежит несколько совершенно новых технологий. Первая - это новый диэлектрический материал с гораздо более высокими изолирующими свойствами (c более высокой диэлектрической проницаемостью); вторая - затворы, с помощью которых снижается ток утечки. Разработанные для этого нового транзистора элементы конструкции планируется использовать в серийной продукции Intel во второй половине текущего десятилетия.

    Еще одной перспективной технологией, позволяющей устранить ограничения по росту тактовой частоты современных микросхем, является новая технология изготовления корпусов. В современных микросхемах полупроводниковые кристаллы соединяют с корпусом с помощью крошечных шариков припоя, обеспечивающих механическое крепление и электрическое соединение кристалла с корпусом. В результате экспоненциального роста частоты будущих процессоров эффективность шариковых соединений, толщина корпуса и количество точек соединения превращаются в серьезную проблему. В октябре 2001 года корпорация Intel представила новаторскую технологию изготовления корпусов, получившую название Bumpless Build-up Layer (BBUL), которая позволяет избавиться от шариковых соединений, наращивая корпус вокруг полупроводникового кристалла. Новая технология не только в несколько раз уменьшает размеры «упакованного» микропроцессора, но и существенно улучшает его индуктивные свойства. Этот метод позволяет уменьшить толщину корпуса и снизить рабочее напряжение процессора. Технология начнет активно применяться во второй половине этого десятилетия.

    Еще одна серьезная проблема, препятствующая экспоненциальному росту тактовой частоты процессоров и соответственно закону Мура, - это проблема тепловыделения. Ее решению уделяется немало внимания уже сейчас. Действительно, давайте посмотрим, к чему приводит перспектива экспоненциального роста тактовой частоты.

    В соответствии с законом Мура в 2010 году следует ожидать появления микропроцессора с тактовой частотой 30 ГГц и размером проводников 10 нм или меньше. Но, как следует из законов физики, чем больше транзисторов в процессоре и чем больше его тактовая частота, тем больший ток он потребляет. А с ростом потребляемого тока увеличивается и тепловыделение. С 1970-го по 1990 год плотность выделяемой мощности, измеряемая в ваттах на квадратный сантиметр, оставалась в пределах нескольких единиц, а к 2000 году достигла 10. Если выстроить прогнозируемую кривую до 2010 года, то в 2003-2004 годах этот показатель должен достичь 100 (что соответствует энерговыделению в ядерном реакторе), к 2008 году - 1000 (примерно как в соплах ракеты), а после 2010 года - 10 000 (лишь немного холоднее, чем на поверхности Солнца). Итак, совершенно очевидно, что без решения проблемы снижения энергопотребления дальнейший рост тактовой частоты процессоров просто невозможен.

    Распространение закона Мура

    сследователи Intel расширяют зону действия закона Мура, выявляя и активно разрабатывая полупроводниковые технологии, выходящие за рамки производства транзисторов и наращивания производительности. Поскольку количество транзисторов в полупроводниковых компонентах удваивается каждые два года, вместе с этим растут и возможности по повышению сложности компонентов и интеграции в них различных устройств. Такое сочетание - количество элементов, сложность и конвергенция - позволяет распространить действие закона Мура на самые разные сферы. Речь идет о беспроводных технологиях, сенсорах и сенсорных сетях, а также об оптических технологиях.

    Беспроводные технологии

    Беспроводные технологии корпорация Intel развивает под лозунгом «Radio Free Intel». Суть этой концепции состоит в том, что технологии беспроводной передачи данных становятся настолько универсальными и недорогими, что их вполне можно интегрировать практически во все электронные устройства. Для реализации этого плана в Intel разработано множество технологий.

    До изобретения цифровой обработки радиосистемы строились полностью на аналоговых схемах. По мере освоения преимуществ, которые дает КМОП-технология в плане стоимости и размеров деталей, увеличивалась и роль цифровой обработки сигнала (DSP) в конструкции коммуникационных систем.

    До недавнего времени в высокочастотных беспроводных коммуникационных системах для получения необходимой производительности аналоговых схем входного каскада использовались технологические процессы на основе арсенида галлия и другие аналогичные технологии. Несмотря на то что эти технологии обеспечивают функциональную производительность, необходимую для сегодняшних радиосистем, они все же не способны дать те показатели стоимости и масштабируемости, которые предоставляет стандартная КМОП-технология и которые диктует закон Мура. Увеличение скорости переключения транзисторов, которое происходит в результате уменьшения геометрии конструкций, разрабатываемых на основе КМОП, делает возможным проектирование аналоговых схем, работающих на очень высоких частотах, с очень хорошими коэффициентами передачи и параметрами линейности. Эти новые возможности позволят масштабировать конструкции аналоговых схем в соответствии с цифровыми возможностями, предсказанными Муром.

    Исследования специалистов лабораторий Intel направлены на решение проблем, которые связаны с использованием технологии производства, оптимизированной под транзисторы с цифровым переключением и низким напряжением питания, а также под синтез аналоговых ВЧ-схем. В целях облегчения разработки и быстрого развертывания новых радиосистем специалисты лабораторий Intel работают над определением перепрограммируемой цифровой коммуникационной платформы с переменной конфигурацией. В платформе этой разработки будут использоваться мощные процессоры, различные методики цифровой обработки сигнала и высокоскоростные цифровые логические схемы, способные обеспечить передачу данных со скоростью свыше 100 Мбит/с. В целях поддержки различных протоколов беспроводной связи конфигурация этой платформы будет переменной. Например, масштабируемость указанной платформы позволит использовать ее в стандарте 802.11а или для запуска экспериментальных приложений нового стандарта Ultra Wide Band (UWB), работающих на скорости свыше 100 Мбит/с.

    Исследователи Intel создают интегрированные в кристаллы интеллектуальные радиосхемы со встроенными перенастраиваемыми блоками подключения к беспроводным сетям, которые обеспечивают постоянное соединение, а также возможность автоматического и прозрачного переключения между проводными и беспроводными сетями.

    В качестве одной из технологий, позволяющих реализовать радиосистемы на основе КМОП, являются микроэлектромеханические системы MEMS (Micro-Electro Mechanical System).

    Микроэлектромеханические системы представляют собой механические структуры, выполненные на кремниевой основе с использованием технологий, аналогичных тем, которые применяются при производстве полупроводников. Технология производства микроэлектромеханических систем позволяет объединять на одном кристалле механические и электронные компоненты. Благодаря MEMS-технологиям в настоящее время могут быть созданы совершенно новые микросистемы, которые, обладая большим числом функциональных возможностей, займут гораздо меньше места. Микроэлектромеханические устройства представляют собой чипы, в состав которых входят механические элементы, способные совершать движения. Движение управляется напряжением или током, подающимся на кремниевый кристалл.

    Микроэлектромеханические MEMS-системы являются первыми кандидатами для применения в области беспроводных коммуникаций. На базе MEMS-технологий возможно создание гибких компонентов беспроводных устройств, обладающих меньшими размерами и обеспечивающих более высокую производительность и более тесную интеграцию с пассивными радиоэлементами, применяемыми в беспроводных устройствах. Пассивные компоненты радиоустройств, такие как катушки индуктивности и кварцевые резонаторы, по-прежнему занимают много места. Из-за их аналоговой природы не произошло такого снижения стоимости и уменьшения размера, как у цифровых компонентов. Благодаря применению кремниевой MEMS-технологии возможно миниатюризировать эти пассивные компоненты и создать гибридные электронно-механические устройства, в которых пассивные и активные элементы изготовлены в рамках одного и того же компонента. В качестве примеров компонентов, выполненных с использованием MEMS-технологии, можно привести радиокоммутационные устройства, резонаторы, фильтры и варакторы. Кроме пассивных электронных компонентов, MEMS-технология применяется для производства сверхмаломощных бистабильных цветных дисплеев, очень чувствительных направленных микрофонов и интеллектуальных антенн. Сочетание электронных компонентов с микроскопическими механическими движущимися частями позволяет применить принципы закона Мура, повышая уровень интеграции и сокращая стоимость всей радиосистемы в целом.

    Сенсорные сети

    Другая сфера, на которую Intel планирует распространить действие закона Мура, — это сенсорные сети. Сенсоры - это устройства, сочетающие в себе сразу три функции: измерительную, вычислительную и коммуникационную. Самонастраивающиеся сети сенсоров, соединяющие достижения полупроводниковых технологий с результатами исследований в области самоорганизующихся сетей, могут содержать тысячи сенсорных устройств, связывающихся между собой и обменивающихся информацией через беспроводные каналы. Будучи рассеянными на достаточно большой площади, они могут находиться в спящем состоянии и не потреблять энергии, если в них нет нужды. Когда же они оказываются востребованы, сенсоры просыпаются, самоорганизуются оптимальным образом в сеть и передают информацию по цепи - от каждого к каждому. Заставить сенсоры работать так, как это требуется, совсем непросто. Туда следует загрузить сложные алгоритмы, с помощью которых сенсор сможет определять, где находится ближайший сосед, и связываться с ним. В зависимости от ситуации они могут выбирать различные пути для передачи информации и разные информационные параметры.

    Сенсорные сети могут применяться в самых разнообразных приложениях, включая недавно появившиеся системы мониторинга природных сообществ. Такая сеть, например, помогает орнитологам, изучающим гнездовья буревестника Лича на острове Грейт Дак в штате Мэн, получать важнейшие данные без присутствия человека.

    Фотоника

    Третье направление, на которое распространяет свое действие закон Мура, - это фотоника, или коммуникационные технологии на основе световых волн. В обычном компьютере и традиционном телефоне информация переносится посредством электрических сигналов, однако сей «информационный ресурс» имеет пределы. С каждым днем информационный поток нарастает, и сети на основе медного кабеля уже не справляются с такой нагрузкой. Телекоммуникационная отрасль в ответ на рост Интернет-трафика обратилась к оптоволоконным технологиям.

    Передача информации, осуществляемая с помощью света, происходит обычно через волоконно-оптический кабель. Основное преимущество такого кабеля состоит в том, что в настоящее время можно передавать свет на очень большие расстояния, практически без потерь в мощности сигнала.

    Еще одно достоинство волоконно-оптического кабеля заключается в возможности передачи сразу нескольких сигналов с разными длинами волн через единственный оптоволоконный кабель. Эта технология получила название Dense Wavelength Division Multiplexing (DWDM) - плотное мультиплексирование по длине волны. С момента появления первых DWDM-систем в середине 1990-х годов количество каналов, передаваемых по одному волокну, увеличилось с 16 и менее до более чем 40. Сегодня удается передавать на большие расстояния несколько каналов по 10 Гбит/с каждый. Сочетание более высокоскоростных каналов передачи и возможностей технологии DWDM в будущем позволит телекоммуникационным компаниям передавать по одному оптоволокну триллион бит в секунду - это величина, превосходящая весь нынешний трафик Интернета.

    Сегодня типичная оптическая сеть сегодня состоит из множества компонентов: лазерного источника или передатчика света, мультиплексора/демультиплексора для объединения оптических сигналов с разными длинами волн, усилителей оптического сигнала, демультиплексоров и приемников, преобразующих оптический сигнал обратно в электрический. Все эти компоненты громоздки и зачастую собираются вручную, что обусловливает их высокую стоимость.

    Задача полупроводниковой фотоники - поиск путей использования полупроводниковых компонентов и стандартных полупроводниковых технологий для создания оптических устройств. Идея состоит в том, чтобы создавать оптические конструктивные блоки, выполняющие активные функции, а не просто пассивные волноводы. Такие крошечные полупроводниковые конструктивные блоки в будущем можно будет устанавливать в оптические модули, снижая их цены и габариты.

    В центре этих исследований - принципиально новый подход, позволяющий управлять оптическими сигналами в динамическом режиме без использования движущихся частей. Среди устройств, которые могут возникнуть в результате этих исследований, - оптические фильтры, быстродействующие коммутаторы и сверхскоростные оптические модуляторы. В рамках этих исследований удалось создать целый ряд функциональных оптических устройств исключительно на полупроводниковой основе. Среди этих устройств — перестраиваемый оптический фильтр, который Intel продемонстрировала на конференции Форума Intel для разработчиков в прошлом году. Этот фильтр шириной в несколько микрон и длиной в пару миллиметров позволяет разделять по длинам волн сигналы в спектре DWDM. Его малые размеры подчеркивают потенциальную важность такого рода полупроводниковых фотоэлектронных устройств. Однако существует фундаментальный предел, связанный с природой света, который не позволяет сократить размеры этих устройств до уровня ниже нескольких микрон. Создание полупроводниковых оптических устройств действительно позволяет интегрировать различные оптические функции в значительно более компактных устройствах, чем существующие сегодня. Кроме того, применение полупроводников в сочетании со стандартными технологиями изготовления и сборки интегральных схем позволит создавать новые недорогие технологии корпусирования и сборки. Все это определяет реальные возможности и эффективность полупроводниковой фотоники независимо от конкретных устройств и приложений.

    В статье были использованы материалы Форума Intel для разработчиков (IDF Spring 2002).