Какая механическая энергия пара потенциальная или кинетическая. Потенциальная и кинетическая энергия. Закон сохранения механической энергии

В предыдущем параграфе было выяснено, что когда тела, взаимодействующие друг с другом силой упругости или силой тяжести, совершают работу, то изменяется взаимное расположение тел или их частей. А когда работу совершает движущееся тело, то изменяется его скорость. Но при совершении работы изменяется энергия тел. Отсюда можно заключить, что энергия тел, взаимодействующих силой упругости или силой тяжести, зависит от взаимного расположения этих тел или их частей. Энергия же движущегося тела зависит от его скорости.

Энергию тел, которой они обладают вследствие взаимодействия друг с другом, называют потенциальной энергией. Энергию же тел, которой они обладают вследствие своего движения, называют кинетической энергией.

Следовательно, энергия, которой обладает Земля и находящееся вблизи нее тело, - это потенциальная энергия системы Земля - тело. Для краткости принято говорить, что этой энергией обладает само тело, находящееся вблизи поверхности Земли.

Энергия деформированной пружины - это тоже потенциальная энергия. Она определяется взаимным расположением витков пружины.

Кинетическая энергия - это энергия движения. Кинетической энергией может обладать тело и не взаимодействующее с другими телами.

Тела могут обладать одновременно и потенциальной, и кинетической энергией. Например, искусственный спутник Земли обладает кинетической энергией, потому что он движется, и потенциальной энергией, потому что он взаимодействует силой всемирного тяготения с Землей. Падающий груз тоже обладает и кинетической, и потенциальной энергией.

Посмотрим теперь, как можно вычислить энергию, которой обладает тело в данном состоянии, а не только ее изменение. Для этой цели нужно из различных состояний тела или системы тел выбрать одно определенное состояние, с которым будут сравниваться все остальные.

Назовем это состояние «нулевым состоянием». Тогда энергия тел в любом состоянии будет равна работе, которая совершается

при переходе из этого состояния в пулевое состояние. (Очевидно, что в нулевом состоянии энергия тела равна пулю.) Напомним, что работа, совершаемая силон тяжести и силой упругости, не зависит от траектории движения тела. Она зависит только от его начального и конечного положений. Точно так же работа, совершаемая при изменении скорости тела, зависит только от начальной и конечной скорости тела.

Какое состояние тел выбрать за нулевое, безразлично. Но в некоторых случаях выбор нулевого состояния напрашивается сам собой. Например, когда речь идет о потенциальной энергии упруго деформированной пружины, естественно считать, что недеформированная пружина находится в нулевом состоянии. Энергия недеформированной пружины равна нулю. Тогда потенциальная энергия деформированной пружины будет равна той работе, которую совершила бы эта пружина, перейдя в недеформпрованноесостояние. Когда нас интересует кинетическая энергия движущегося тела, естественно принять за нулевое то состояние тела, в котором его скорость равна нулю. Кинетическую энергию движущегося тела мы получим, если вычислим работу, которую оно совершило бы, двигаясь до полной остановки.

Иное дело, когда речь идет о потенциальной энергии тела, поднятого на некоторую высоту над Землей. Эта энергия зависит, конечно, от высоты поднятия тела. Но тут нет «естественного» выбора нулевого состояния, т. е. того положения тела, от которого нужно отсчитывать его высоту. Можно выбрать за нулевое то состояние тела, когда оно находится на полу комнаты, на уровне моря, на дне шахты и т. д. Необходимо лишь при определении энергии тела на разных высотах отсчитывать эти высоты от одного и того же уровня, высота которого принята равной нулю. Тогда значение потенциальной энергии тела на данной высоте будет равно работе, которая была бы совершена при переходе тела с этой высоты на нулевой уровень.

Выходит, что в зависимости от выбора нулевого состояния энергия одного и того же тела имеет разные значения! В этом нет никакой беды. Ведь для вычисления работы, совершаемой телом, нам нужно знать изменение энергии, т. е. разность двух значений энергии. А эта разность никак не зависит от выбора нулевого уровня. Например, для того чтобы определить, на сколько вершина одной горы выше другой, безразлично, откуда отсчитывается высота каждой вершины. Важно лишь, чтобы она отсчитывалась от одного и того же уровня (например, от уровня моря).

Изменение как кинетической, так и потенциальной энергии тел всегда равно по абсолютной величине работе, совершенной действующими на эти тела силами. Но между обоими видами энергии имеется важное различие. Изменение кинетической энергии тела при действии на него силы действительно равно совершенной этой силой работе, т. е. совпадает с ней как по абсолютной величине, так и по знаку. Это непосредственно следует из теоремы о

кинетической энергии (см. § 76). Изменение же потепцналыюй энергии тел равно работе, совершенной силами взаимодействия, только по абсолютной величине, а по знаку противоположно ей. В самом деле, когда тело, на которое действует сила тяжести, перемещается вниз, совершается положительная работа, а потенциальная энергия тела при этом уменьшается. То же относится к деформированной пружине: при сокращении растянутой пружины сила упругости совершает положительную работу, а потенциальная энергия пружины уменьшается. Напомним, что изменение величины - это разность между последующим и предшествующим значением этой величины. Поэтому, когда изменение какой-нибудь величины состоит в том, что она увеличивается, это изменение имеет положительный знак. Наоборот, если величина уменьшается, ее изменение отрицательно.

Упражнение 54

1. В каких случаях тело обладает потенциальной энергией?

2. В каких случаях тело обладает кинетической энергией?

3. Какой энергией обладает свободно падающее тело?

4. Как изменяется потенциальная энергия тела, на которое действует сила тяжести, при его движении вниз?

5. Как изменится потенциальная энергия тела, на которое действует сила упругости или сила тяжести, если, пройдя по любой траектории, тело вернется в исходную точку?

6. Как связана работа, совершаемая пружиной, с изменением ее потенциальной энергии?

7. Как изменяется потенциальная энергия пружины, когда недеформированную пружину растягивают? Сжимают?

8. Шарик подвешен к пружине и совершает колебания. Как изменяется потенциальная энергия пружины при ее движении вверх и вниз?

Мышцы, приводящие в движение звенья тела, совершают механическую работу.

Работа в некотором направлении – это произведение силы (F), действующей в направлении перемещения тела на пройденный им путь (S): А = F S.

Выполнение работы требует энергии. Следовательно, при выполнении работы энергия в системе уменьшается. Поскольку для того чтобы была совершена работа, необходим запас энергии, последнюю можно определить следующим образом: Энергия это возможность совершить работу, это некоторая мера имеющегося в механической системе « ресурса» для её выполнения . Кроме того, энергия – это мера перехода одного вида движения в другой.

В биомеханике рассматривают следующие основные виды энергии :

Потенциальная, зависящая от взаимного расположения элементов механической системы тела человека;

Кинетическая поступательного движения;

Кинетическая вращательного движения;

Потенциальная деформации элементов системы;

Тепловая;

Обменных процессов.

Полная энергия биомеханической системы равна сумме всех перечисленных видов энергии.

Поднимая тело, сжимая пружину, можно накопить энергию в форме потенциальной для последующего её использования. Потенциальная энергия всегда связана с той или иной силой, действующей со стороны одного тела на другое. Например, Земля силой тяжести действует на падающий предмет, сжатая пружина – на шарик, натянутая тетива – на стрелу.

Потенциальная энергия это энергия, которой обладает тело благодаря своему положению по отношению к другим телам, или благодаря взаимному расположению частей одного тела .

Стало быть сила тяготения и упругая сила являются потенциальными.

Гравитационная потенциальная энергия: Еп = m g h

Где k – жёсткость пружины; х – её деформация.

Из приведённых примеров видно, что энергию можно накопить в форме потенциальной энергии (поднять тело, сжать пружину) для последующего использования.

В биомеханике рассматривают и учитывают два вида потенциальной энергии: обусловленную взаимным расположением звеньев тела к поверхности Земли (гравитационная потенциальная энергия); связанную с упругой деформацией элементов биомеханической системы (кости, мышцы, связки) или каких-либо внешних объектов (спортивных снарядов, инвентаря).

Кинетическая энергия запасается в теле при движении. Движущееся тело совершает работу за счёт её убыли. Поскольку звенья тела и тело человека совершают поступательное и вращательное движения, суммарная кинетическая энергия (Ек) будет равна: , где m – масса, V – линейная скорость, J – момент инерции системы, ω – угловая скорость.

Энергия поступает в биомеханическую систему за счёт протекания в мышцах метаболических обменных процессов. Изменение энергии, в результате которого совершается работа, не является высокоэффективным процессом в биомеханической системе, то есть не вся энергия переходит в полезную работу. Часть энергии теряется необратимо, переходя в тепло: только 25 % используется для выполнения работы, остальные 75 % преобразуются и рассеиваются в организме.

Для биомеханической системы применяют закон сохранения энергии механического движения в форме:

Епол = Ек + Епот + U,

где Епол – полная механическая энергия системы; Ек – кинетическая энергия системы; Епот – потенциальная энергия системы; U – внутренняя энергия системы, представляющая в основном тепловую энергию.

Полная энергия механического движения биомеханической системы имеет в своей основе два следующих источника энергии: метаболические реакции в организме человека и механическая энергия внешней среды (деформирующихся элементов спортивных снарядов, инвентаря, опорных поверхностей; противников при контактных взаимодействиях). Передаётся эта энергия посредством внешних сил.

Особенностью энергопродукции в биомеханической системе является то, что одна часть энергии при движении расходуется на совершение необходимого двигательного действия, другая идёт на необратимое рассеивание запасённой энергии, третья сохраняется и используется при последующем движении. При расчёте затрачиваемой при движениях энергии и совершаемой при этом механической работы тело человека представляют в виде модели многозвеньевой биомеханической системы, аналогичной анатомическому строению. Движения отдельного звена и движения тела в целом рассматривают в виде двух более простых видов движения: поступательного и вращательного.

Полную механическую энергию некоторого i-го звена (Епол) можно подсчитать как сумму потенциальной (Епот) и кинетической энергии (Ек). В свою очередь Ек можно представить как сумму кинетической энергии центра масс звена (Ек.ц.м.), в которой сосредоточена вся масса звена, и кинетической энергии вращения звена относительно центра масс (Ек. Вр.).

Если известна кинематика движения звена, это общее выражение для полной энергии звена будет иметь вид: , где mi – масса i-го звена; ĝ – ускорение свободного падения; hi – высота центра масс над некоторым нулевым уровнем (например, над поверхностью Земли в данном месте); - скорость поступательного движения центра масс; Ji – момент инерции i- го звена относительно мгновенной оси вращения, проходящей через центр масс; ω – мгновенная угловая скорость вращения относительно мгновенной оси.

Работа по изменению полной механической энергии звена (Аi) за время работы от момента t1 до момента t2 равна разности значений энергии в конечный (Еп(t2)) и начальный (Еп(t1)) моменты движения:

Естественно, в данном случае работа затрачивается на изменение потенциальной и кинетической энергии звена.

Если величина работы Аi > 0, то есть энергия увеличилась, то говорят, что над звеном совершена положительная работа. Если же Аi < 0, то есть энергия звена уменьшилась, - отрицательная работа.

Режим работы по изменению энергии данного звена называется преодолевающим, если мышцы совершают положительную работу над звеном; уступающим, если мышцы совершают отрицательную работу над звеном.

Положительная работа совершается, когда мышца сокращается против внешней нагрузки, идёт на разгон звеньев тела, тела в целом, спортивных снарядов и т. д. Отрицательная работа совершается, если мышцы противодействуют растяжению за счёт действия внешних сил. Это происходит при опускании груза, спуска по лестнице, противодействии силе, превышающей силу мышц (например в армрестлинге).

Замечены интересные факты соотношения положительной и отрицательной работ мышц: отрицательная работа мышц экономичней положительной; предварительное выполнение отрицательной работы повышает величину и экономичность следующей за ней положительной работы.

Чем больше скорость передвижения тела человека (во время легкоатлетического бега, бега на коньках, бега на лыжах и т. п.), тем большая часть работ затрачивается не на полезный результат - перемещение тела в пространстве, а на перемещение звеньев относительно ОЦМ. Поэтому при скоростных режимах основная работа тратится на разгон и торможение звеньев тела, так как с ростом скорости резко растут ускорения движения звеньев тела.

Одной из характеристик любой системы является ее кинетическая и потенциальная энергия. Если какая-либо сила F оказывает действие на находящееся в покое тело таким образом, что последнее приходит в движение, то имеет место совершение работы dA. В этом случае значение кинетической энергии dT становится тем выше, чем больше совершено работы. Другими словами, можно написать равенство:

Учитывая путь dR, пройденный телом, и развиваемую скорость dV, воспользуемся вторым для силы:

Важный момент: данный закон можно использовать в том случае, если взята инерциальная система отсчета. Выбор системы влияет на значение энергии. В международной энергия измеряется в джоулях (дж).

Отсюда следует, что частицы или тела, характеризующейся скоростью перемещения V и массой m, составит:

T = ((V * V)*m) / 2

Можно сделать вывод, что кинетическая энергия определяется скоростью и массой, фактически представляя собой функцию движения.

Кинетическая и потенциальная энергия позволяют описать состояние тела. Если первая, как уже было сказано, непосредственно связана с движением, то вторая применяется в отношении системы взаимодействующих тел. Кинетическая и обычно рассматриваются для примеров, когда сила, связывающая тела, не зависит от В таком случае важны лишь начальное и конечное положения. Самый известный пример - гравитационное взаимодействие. А вот если важна и траектория, то сила является диссипативной (трение).

Говоря простым языком, потенциальная энергия представляет собой возможность совершить работу. Соответственно, эта энергия может быть рассмотрена в виде работы, которую нужно совершить для перемещения тела из одной точки в другую. То есть:

Если потенциальную энергию обозначить как dP, то получаем:

Отрицательное значение указывает, что выполнение работы происходит благодаря уменьшению dP. Для известной функции dP возможно определить не только модуль силы F, но и вектор ее направления.

Изменение кинетической энергии всегда связано с потенциальной. Это легко понять, если вспомнить системы. Суммарное значение T+dP при перемещении тела всегда остается неизменным. Таким образом, изменение T всегда происходит параллельно с изменением dP, они словно перетекают друг в друга, преобразовываясь.

Так как кинетическая и потенциальная энергия взаимосвязаны, их сумма представляет собой полную энергию рассматриваемой системы. В отношении молекул она является и присутствует всегда, пока есть хотя бы тепловое движение и взаимодействие.

При выполнении расчетов выбирается система отсчета и любой произвольный момент, взятый за начальный. Точно определить значение потенциальной энергии можно лишь в зоне действия таких сил, которые при совершении работы не зависят от траектории перемещения какой-либо частицы или тела. В физике такие силы получили название консервативных. Они всегда взаимосвязаны с законом сохранения полной энергии.

Интересный момент: в ситуации, когда внешние воздействия минимальны или нивелируются, любая изучаемая система всегда стремится к такому своему состоянию, когда ее потенциальная энергия стремится к нулю. К примеру, подброшенный мяч достигает предела своей потенциальной энергии в верхней точке траектории, но в то же мгновение начинает движение вниз, преобразуя накопленную энергию в движение, в выполняемую работу. Стоит еще раз обратить внимание, что для потенциальной энергии всегда имеет место взаимодействие как минимум двух тел: так, в примере с мячом на него оказывает влияние гравитация планеты. Кинетическая же энергия может быть рассчитана индивидуально для каждого движущегося тела.

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

Энергия в физике

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Потенциальная энергия

В физике потенциальной энергией называют энергию, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела. То есть, если тело поднято над землей, то оно обладает возможностью падая, произвести какую-либо работу.

И возможная величина этой работы будет равна потенциальной энергии тела на высоте h. Для потенциальной энергии формула определяется по следующей схеме:

A=Fs=Fт*h=mgh, или Eп=mgh,

где Eп потенциальная энергия тела,
m масса тела,
h - высота тела над поверхностью земли,
g ускорение свободного падения.

Причем за нулевое положение тела может быть принято любое удобное нам положение в зависимости от условий проводимых опыта и измерений, не только поверхность Земли. Это может быть поверхность пола, стола и так далее.

Кинетическая энергия

В случае, когда тело движется под влиянием силы, оно уже не только может, но и совершает какую-то работу. В физике кинетической энергией называется энергия, которой обладает тело вследствие своего движения. Тело, двигаясь, расходует свою энергию и совершает работу. Для кинетической энергии формула рассчитывается следующей образом:

A = Fs = mas = m * v / t * vt / 2 = (mv^2) / 2 , или Eк= (mv^2) / 2 ,

где Eк кинетическая энергия тела,
m масса тела,
v скорость тела.

Из формулы видно, что чем больше масса и скорость тела, тем выше его кинетическая энергия.

Каждое тело обладает либо кинетической, либо потенциальной энергией, либо и той, и другой сразу, как, например, летящий самолет.