Цитогенетический метод диагностики хромосомных болезней. Методы диагностики хромосомных заболеваний. Какая степень риска хромосомных аномалий считается высокой

Зыгарь О.Н.

С тех пор как в 1959 г. была установлена причина нескольких клинических синдромов (J. Lejeune и соавторы нашли лишнюю хромосому из группы «С» при болезни Дауна, T. Jacobs и J. Stroung обнаружили лишнюю Х-хромосому при синдроме Клайнфельтера, С. Ford и соавторы описали больную, у которой отсутствовала Х-хромосома при синдроме Тернера), началось бурное развитие цитогенетических исследований патологии человека, легших в основу пренатальной диагностики хромосомных заболеваний.

Различные хромосомные аберрации встречаются с разной частотой. По сводным данным многих исследований, распространенность наиболее частых хромосомных аберраций среди новорожденных следующая:

  • 21-трисомия (синдром Дауна) - 1:700;
  • XXX (трисомия Х) - 1:1000 (девочки);
  • XYY (синдром дубль-Y) - 1:1000 (мальчики);
  • XXY (синдром Клайнфелтера) - 1:1400 (мальчики);
  • ХО (синдром Шерешевского - Тернера) - 1:3300 (девочки);
  • 46.5р (синдром «кошачьего крика») - 1:4000;
  • 18-трисомия (синдром Эдвардса) - 1:6800;
  • 13-трисомия (синдром Патау) - 1:7600 .

Распространенность хромосомных заболеваний в Украине значительно больше, чем в развитых странах мира, где успешно проводится их первичная профилактика и пренатальная диагностика.

Ежегодно в нашей стране рождается более 50 тысяч детей с врожденной и наследственной патологией , и за этими сухими цифрами стоит маленькое живое существо, которое пришло в этот мир для того, чтобы быть здоровым и счастливым. За каждым случаем выявленной врожденной патологии - искалеченная жизнь ребенка, его родителей, целых семей.

Пренатальная диагностика хромосомных заболеваний (ПД) представляет собой комплекс врачебных мероприятий и диагностических методов, направленных на выявление морфологических, структурных, функциональных или молекулярных нарушений внутриутробного развития человека .

Она предполагает применение массовых скринирующих программ для беременных для формирования групп риска и их более углубленное обследование. Эти программы направлены на обследование всех беременных без исключения.

Ультразвуковое исследование проводится в сроках 9-11 и 16-21 недели, включая селективное УЗИ в группах высокого риска. Отметим основные маркеры хромосомной патологии, выявляемые в разные периоды беременности этим методом.

I триместр беременности – определение носовой кости (при синдроме Дауна отмечается нарушение оссификации костей носа в 60-75% случаев), расширение воротникового пространства более 3 мм (при синдроме Дауна в 85% случаев); II триместр беременности – кисты сосудистого сплетения головного мозга плода, толщина шейной складки более 6 мм, изменение длины бедренной кости (особенно при трисомии по 18,13 парам хромосом и синдроме Тернера укорочение бедренной кости составляет 60% случаев), гиперэхогенный кишечник и др.

Биохимический скрининг основан на лабораторном определении в крови женщины маркерных сывороточных белков, которые продуцируются клетками плода или плаценты и поступают в кровоток матери. Концентрация этих веществ изменяется в зависимости от срока беременности и от состояния плода, поэтому они широко используются в диагностике патологии беременности. Основные маркеры хромосомной патологии, выявляемые биохимическим скринингом в течение беременности, также могут быть периодизированы.

В I триместре беременности определяется содержание в крови беременной белков РАРР-А (ассоциированный с беременностью плазменный протеин А) и ХГЧ (свободная бета-субъединица хорионического гонадотропина) в сроке 9 – 13 недель беременности.

PAPP-A - ассоциированный с беременностью плазменный протеин A (pregnancy-associated plasma protein-A, PAPP-A) – большой цинк-содержащий металлогликопротеин с молекулярной массой около 800 кДа. Во время беременности PAPP-A вырабатывается синцитиотрофобластом (тканью, являющейся наружным слоем плаценты) и экстраворсинным цитотрофобластом и поступает в кровоток матери. PAPP-A модулирует иммунный ответ материнского организма и является одним из факторов, который обеспечивает развитие и выживание плаценты. Концентрации PAPP-A в крови матери нарастают с увеличением срока беременности. Наибольший рост показателя отмечается в конце беременности. PAPP-A используется в качестве одного из трех маркеров риска трисомии 21 (синдром Дауна) вместе со свободной?-субъединицей ХГЧ и толщиной воротникового пространства. Его уровень в конце первого триместра беременности (8-14 недель) значительно снижен при трисомии 21 или трисомии 18 (синдром Эдвардса) у плода. Важно помнить, что значимость показателя как маркера синдрома Дауна исчезает после 14 недель беременности. Если рассматривать PAPP-A в качестве изолированного маркера риска синдрома Дауна в первом триместре беременности, его необходимо определять в сроки 8–9 недель. Однако свободная?-субъединица ХГЧ является стабильным маркером риска синдрома Дауна в сроки 10–18 недель, поэтому оптимальный срок сдачи крови для двойного теста первого триместра беременности – 10–12 недель.

Свободная?-субъединица ХГЧ – гликопротеин, синтезирующийся синцитиотрофобластом. Его биологическая роль заключается в регуляции эндокринной системы плода. Определяется в сыворотке крови беременной с 10-12-го дня после оплодотворения. Его концентрация быстро нарастает, достигая максимума к 10-11-й неделе беременности. Уровень свободной?-субъединицы ХГЧ определяется для мониторирования беременности на любом сроке и пренатальной диагностики – главным образом в I триместре беременности. Увеличение концентрации ХГЧ указывает на синдром Дауна, снижение – на синдром Эдвардса или триплоидию.

Во II триместре беременности определяют содержание в крови АФП (альфафетопротеина), НЭ (свободный (неконъюгированный) эстриол), ХГЧ. Альфафетопротеин (АФП) - это гликопротеин плода, вырабатываемый вначале в желточном мешке, а потом в печени и желудочно-кишечном тракте плода. АФП - транспортный белок в крови плода, связывающий целый ряд различных факторов (билирубин, жирные кислоты, стероидные гормоны). Он же – двойной регулятор роста внутриутробного плода. В крови матери уровень АФП постепенно повышается с увеличением срока беременности и достигает максимума к 30 неделям. Уровень АФП повышается при дефектах нервной трубки у плода и многоплодной беременности, а понижается – при синдромах Дауна и Эдвардса. Свободный эстриол (НЭ) - эстриол синтезируется в плаценте из 16?-гидрокси-дегидроэпиантростерон-сульфата, поступающего со стороны плода. Главный источник предшественников эстриола – надпочечники плода. Он - главный эстрогенный гормон беременности, обеспечивающий рост матки и подготовку молочных желез к лактации.

Уровень свободного эстриола повышается по мере развития беременности и в третьем триместре беременности может использоваться для диагностики благополучия плода. Его уровень при синдроме Дауна, синдроме Эдвардса значительно снижается.

Существуют и другие сывороточные маркеры : ингибин-А, 17-гидроксипрогестерон, плацентарный лактоген, которые отражают состояние плода, его развитие, но их определение не достаточно эффективно в пренатальной диагностике.

Разработаны и используются специальные компьютерные скринирующие программы , заключительным этапом которых является автоматический расчет комплексного индивидуального риска рождения ребенка с хромосомным заболеванием или пороками развития. Базовыми параметрами в этих расчетах являются возрастной риск, степень отклонения тестируемых белков. Примерами таких автоматизированных программ, результативность которых проверена на практике, являются «Life Circle» (Финляндия) с использованием анализаторов «Wallace», «Prisca» с анализаторами «Immulite» (США) и др. Основным фактором, влияющим на эффективность скрининга, является время, которое проходит между сдачей анализа и получением результата – от 2 до 5 недель.

Фактор времени очень важен, особенно при проведении обследования беременной, так как при выявлении высокого риска требуются дополнительные методы обследования – инвазивная пренатальная диагностика. Нельзя забывать и о естественном волнении женщины, находящейся в ожидании результата – ведь речь идет о здоровье ее будущего ребенка. Эта проблема была решена с помощью создания современной клиники «одного визита» - OSCAR (One Stop Clinic for Assessment of Risk for fetal abnormalities), позволяющей рассчитать индивидуальный риск рождения ребенка с хромосомной патологией и проконсультироваться с врачом-генетиком в течение дня.

Беременная приходит в клинику в удобное для нее время. Оптимальными сроками для пренатальной диагностики являются 11-13 недель и 16-20 недель гестации, так как на этих сроках расчет индивидуального риска наиболее достоверен. На первом этапе обследования она беседует с врачом-генетиком, который собирает подробный анамнез, разъясняет суть предстоящих процедур, при необходимости составляет родословную и регистрирует необходимые данные. Затем женщина проходит биохимическое и ультразвуковое обследование. Следует отметить, что чем меньше временной промежуток между сдачей крови и УЗИ, тем достовернее результаты обследования.

На основании всех проведенных исследований с помощью компьютерной программы рассчитывается риск рождения ребенка с патологией для конкретной беременной. Если рассчитанный индивидуальный риск рождения ребенка с хромосомной патологией оценивается как высокий, для исключения аномалий кариотипа плода женщине рекомендуется проведение инвазивной пренатальной диагностики. Таким образом, использование системы OSCAR позволяет провести наиболее полное пренатальное генетическое обследование в кратчайшие сроки.

(Окончание следует)

ДЛЯ ПРЕПОДАВАТЕЛЯ

модуля «Медицинская генетика»

по дисциплине «Неврология, медицинская генетика, нейрохирургия»

для специальности 060101– Лечебное дело (очная форма обучения)

К ПРАКТИЧЕСКОМУ ЗАНЯТИЮ № 2

ТЕМА: «Хромосомные заболевания»

Утверждены на кафедральном заседании

протокол № ____ от «___»____________ 20__ г.

Заведующий кафедрой

д.м.н., профессор ___________ _ Н.А. Шнайдер

Составители:

д.м.н., доцент _________ ___ Д.В. Дмитренко

к.м.н., ассистент ____________ Е.А. Шаповалова

ассистент _________ __ Ю.Б. Говорина

ассистент ________ ___ К.А. Газенкампф

Красноярск


Занятие № 2

Тема: «Хромосомные заболевания».

1. Форма организации учебного процесса: практическое занятие. Разновидность занятия: дискуссия, демонстрация, анализ проблемных ситуаций. Методы обучения: объяснительно-иллюстративный, метод проблемного изложения, частично-поисковый (эвристический).

2. Значение темы (актуальность изучаемой проблемы).

Хромосомные болезни – большая группа врожденных наследственных болезней с множественными врожденными пороками развития, в основе которых лежат хромосомные или геномные мутации (т.е. хромосомные аномалии). Наиболее часто встречающийся синдром трисомии 21, клинически описан в 1866 г. В 60-х г.г. благодаря введению цитогенетических методов выделилась клиническая цитогенетика, показавшая роль хромосомных и геномных мутаций в развитии патологических синдромов, патологии внутриутробного периода (спонтанные аборты, выкидыши). Кроме того, оказалась значимой роль хромосомных изменений в опухолевом росте, особенно при лейкозах. Число описанных хромосомных аномалий приближается к 1000, из них более 100 имеют клинически хорошо очерченную картину, являясь синдромами.

Цели обучения:

2.1 Общая цель: научить студентов выявлять пациентов с хромосомной патологией, правильно оценивать факторы риска рождения ребенка с хромосомной патологией.



Обучающийся должен обладать:

¾ способностью и готовностью проводить патофизиологический анализ клинических синдромов, обосновывать патогенетически оправданные методы (принципы) диагностики, лечения, реабилитации и профилактики хромосомных заболеваний;

¾ способностью и готовностью оценивать факторы риска рождения ребенка с хромосомной патологией.

Учебная цель.

Обучающийся должен знать:

¾ классификацию хромосомных заболеваний;

¾ генетические аспекты формирования хромосомных заболеваний;

¾ клинические проявления наиболее распространенных хромосомных заболеваний (синдром Дауна, синдром Эдвардса, синдром Патау, синдром Шерешевского-Тернера, синдром Клайнфельтера, синдром Вольфа-Хиршхорна, синдром Лежена, синдром Уильямса, синдром Ди Джорджи, синдром Ангельмана, синдром Прадера-Вилли);

¾ методы диагностики хромосомных заболеваний (цитогенетические): показания, правила проведения, интерпретация результатов;

¾ пренатальную диагностику хромосомных заболеваний и ВПР (неивазивные и инвазивные) методы: показания, сроки проведения, показания к прерыванию беременности;

¾ принципы и методы лечения хромосомных заболеваний;

¾ принципы реабилитации при наиболее часто встречающихся хромосомных заболеваниях;

¾ нормативную документацию, принятую в здравоохранении (законы Российской Федерации, технические регламенты, международные и национальные стандарты, приказы, рекомендации, терминологию, действующие международные классификации), правила заполнения документации.

Обучающийся должен уметь:

¾ анализировать наследственные факторы заболеваний;

¾ собрать анамнез заболевания с выявлением факторов риска рождения детей с хромосомными болезнями;

¾ оценить развитие интеллектуально-мнестических функций;

¾ определить наличие врожденных пороков развития, характерных для наиболее часто встречающихся хромосомных синдромов (синдром Дауна, синдром Эдвардса, синдром Патау, синдром Клайнфельтера, синдром Шерешевского-Тернера, синдром Вольфа-Хиршхорна, синдром Лежена, синдром Уильямса);

¾ использовать в лечебной деятельности методы первичной и вторичной профилактики наследственных заболеваний и ВПР;

¾ сформулировать показания к избранному методу лечения с учетом этиотропных и патогенетических средств;

¾ провести реабилитационные мероприятия при наиболее часто встречающихся хромосомных заболеваниях;

¾ заполнить бланки: направление на кариотипирование, ДНК-диагностику, на УЗИ-скрининг плода и биохимический скрининг.

Обучающийся должен владеть:

¾ навыками анализа наследственных факторов и факторов внешней среды в развитии заболеваний;

¾ навыками общения с коллегами, взрослым населением, их родственниками;

¾ алгоритмом постановки предварительного диагноза наследственно го заболевания с последующим направлением пациента к соответствующему врачу-специалисту;

¾ методами медико-генетического консультирования;

¾ методами общеклинического обследования, интерпретацией результатов лабораторных, инструментальных методов диагностики;

¾ методами лечения хромосомных заболеваний;

¾ навыками заполнения нормативной документации.

3. Место проведения практического занятия учебная комната.

4. Оснащение занятия :

¾ Презентации: «Синдром Клайнфельтера», «Синдром Шерешевского-Тернера», «Основные трисомные синдромы: синдром Дауна, синдром Эдвардса, синдром Патау».

¾ Таблица «Классификация хромосомных заболеваний».

¾ Альбом «Клинические проявления основных хромосомных заболеваний».

¾ Плакаты: «Денверская классификация хромосом», «Хромосомные болезни: правила написания кариотипа», «Деление клеток».

¾ Схемы кариотипов (раздаточный материал).

5. Структура содержания темы .

Хронокарта практического занятия

№ п/п Этапы практического занятия Продолжительность (мин) Содержание этапа и оснащенность
11. Организация занятия Проверка посещаемости и внешнего вида обучающихся
22. Формулировка темы и целей Озвучивание преподавателем темы и ее актуальности, целей занятия
33. Контроль исходного уровня знаний Тестирование
44. Раскрытие учебно-целевых вопросов по теме занятия Изложение основных положений темы Фронтальный опрос
55. Самостоятельная работа обучающихся (текущий контроль) Решение ситуационных задач Работа с историями болезней Написание кариотипа Заполнение бланков: направление на кариотипирование, ДНК-диагностику, на УЗИ-скрининг плода и биохимический скрининг.
66. Итоговый контроль знаний Тестирование Решение ситуационных и нетиповых задач
77. Задание на следующее занятие Учебно-методические разработки следующего занятия, и методические разработки для внеаудиторной работы по теме
Всего:

6. Аннотация .

Хромосомные болезни – большая группа врожденных наследственных болезней с множественными врожденными пороками развития, в основе которых лежат хромосомные или геномные мутации (т.е. хромосомные аномалии).

Суммарный вклад хромосомных аномалий во внутриутробную гибель у человека составляет 45%. При этом, чем раньше прерывается беременность, тем чаще выявляются хромосомные аномалии (у 2-4 недельных абортусов в 70%). Частота хромосомных заболеваний среди перинатально погибших плодов составляет 6%.

В основу классификации хромосомных болезней положены тип хромосомной аномалии и характер дисбаланса хромосомного материала соответствующего кариотипа. Исходя из этих принципов, хромосомные аномалии делятся на три группы:

Нарушение кратности полного гаплоидного набора хромосом;

Численные нарушения по отдельным хромосомам;

Структурные перестройки хромосом.

Первые две группы относятся к геномным мутациям, а третья группа - к хромосомным мутациям. Кроме этого, необходимо учитывать тип клеток, в которых произошла мутация (в гаметах или зиготе), а также иметь в виду, была ли мутация унаследована или она возникла впервые. Таким образом, при постановке диагноза хромосомной болезни необходимо учитывать:

Тип мутации;

Конкретную хромосому;

Форму (полная или мозаичная);

Наследуемый или ненаследуемый случай.

Можно выделить два основных типа структурных перестроек: внутрихромосомные и межхромосомные. В свою очередь, перестройки могут быть сбалансированными (т.е. в геноме присутствуют все локусы, однако их расположение в хромосомах отличается от исходного - нормального) и несбалансированными. Несбалансированные перестройки характеризуются утратой или удвоением участков хромосомы. Внутрихромосомные перестройки, связанные с перестройками внутри одного плеча хромосомы, называются парацентрическими. Крайние участки без центромеры называются фрагментами, и они обычно утрачиваются в ходе митоза.

Делеция - утрата части хромосомы, происходящая в результате двух разрывов и одного воссоединения, с утратой сегмента, лежащего между разрывами.

Дупликация - удвоение сегмента хромосомы, в результате чего клетка организма становится полиплоидной по данному сегменту. Если дупликация находится непосредственно за исходным участком хромосомы, это называется тандем-дупликацией. Кроме того, дупликации могут быть локализованы в других участках хромосомы. Большинство таких перестроек летальны, а те люди, которые с ними выжили, как правило, не способны воспроизвести потомство.

В случае инверсии участок хромосомы разворачивается на 180°, и разорванные концы соединяются в новом порядке. Если в инвертированный участок попадает центромера, такую инверсию называют перицентрической. Если инверсия затрагивает только одно плечо хромосомы, она называется парацентрической. Гены в инвертированном участке хромосомы располагаются в обратном порядке по отношению к исходному в хромосоме.

К межхромосомным перестройкам относят транслокации - обмен сегментами между хромосомами. Различают следующие типы транслокаций:

Реципрокная транслокация, когда две хромосомы взаимно обмениваются сегментами (сбалансированная транслокация); как и инверсия, она не вызывает аномальных эффектов у носителя;

Нереципрокная транслокация - когда сегмент одной хромосомы переносится в другую;

Транслокация типа центрического соединения - когда после разрывов в околоцентромерном районе соединяются два фрагмента с центромерами таким образом, что их центромера соединяется, образуя одну. Взаимное объединение двух акроцентрических хромосом из групп D и G приводит к образованию одной мета- или субметацентрической хромосомы. Такую транслокацию называют робертсоновской.

Большинство хромосомных болезней возникает спорадически в результате геномной и хромосомной мутации в гаметах здоровых родителей или на первых делениях зиготы. Хромосомные изменения в гаметах приводят к развитию так называемых полных, или регулярных, форм нарушения кариотипа, а соответствующие изменения хромосом на ранних стадиях развития эмбриона являются причиной возникновения соматического мозаицизма или мозаичных организмов (наличие в организме двух или более клеточных линий с разным числом хромосом).

Мозаицизм может касаться как половых хромосом, так и аутосом. У человека чаще всего мозаичные формы обнаруживаются в системе половых хромосом. Мозаики, как правило, имеют более «стертые» формы заболевания, чем люди с измененным числом хромосом в каждой клетке. Так, ребенок с мозаичным вариантом болезни Дауна может иметь фактически нормальный интеллект, но физические признаки этого заболевания все равно остаются. Число аномальных клеток может быть различным: чем их больше, тем более ярко выражен симптомокомплекс той или иной хромосомной болезни. В некоторых случаях удельный вес аномальных клеток так невелик, что человек кажется фенотипически здоровым.

Аномалии хромосом, связанные с нарушением плоидности, пред­ставлены триплоидией и тетраплоидией, которые встречаются пре­имущественно в материале спонтанных абортусов. Отмечены лишь единичные случаи рождения детей-триплоидов с тяжелыми множественными ВПР, несовместимыми с нормальной жизнедеятельностью. Триплоидия может возникать как вследствие дигении (оплодотворение дипло­идной яйцеклетки гаплоидным сперматозоидом), так и вследствие диандрии (обратный вариант) и диспермии (оплодотворение гап­лоидной яйцеклетки двумя сперматозоидами).

Хромосомные болезни, связанные с нарушением числа отдель­ных хромосом в наборе, представлены либо целой моносомией (од­ной из двух гомологичных хромосом в норме) либо целой трисомией (тремя гомологами).

Целая моносомия у живорожденных встре­чаются только по хромосоме X (синдром Шерешевского-Тернера), поскольку большинство моносомий по остальным хромосомам на­бора (Y хромосоме и аутосомам) погибают на очень ранних этапах внутриутробного развития и достаточно редко встречаются даже в материале спонтанных абортусов.

Целые трисомии у живорожденных встречаются по X, 8, 9,13,14,18,21 и 22 хромосо­мам. Наибольшая частота хромосомных нарушений - до 70% отме­чается у ранних абортусов. Трисомии по 1,5,6,11 и 19 хромосомам встречаются редко даже в абортивном материале. Более часто целые моно- и трисомии по ряду хромосом набора встре­чаются в мозаичном состоянии как у спонтанных абортусов, так и у детей с множественными ВПР.

Методы диагностики хромосомных заболеваний

Основным методом диагностики хромосомных нарушений является цитогенетическое обследование или кариотипирование. Хромосомный набор (кариотип) одинаков во всех соматических клетках организма (46 хромосом), за исключением уменьшенного вдвое набора в половых клетках. В течение всей жизни индивидуума кариотип не изменяется.

Правила записи кариотипа (см. «Кариотипирование: метод. рекомендации для внеаудиторной работы студентов спец. 060103- педиатрия»/ Н. А. Шнайдер, Е. А. Козулина, Д. В. Дмитренко// Красноярск: КрасГМУ, 2010).

Показания для проведения цитогенетического обследования:

¾ подозрение на хромосомное заболевание по клинической симптоматике (для подтверждения диагноза);

¾ наличие у ребенка множественных врожденных пороков развития;

¾ многократные (более двух) спонтанные аборты, мертворождения или рождения детей с врожденными пороками развития;

¾ нарушение репродуктивной функции неясного генеза у женщин и мужчин (первичная аменорея, бесплодный брак и др.);

¾ существенная задержка умственного и физического развития у ребенка;

¾ пренатальная диагностика (по возрасту, в связи с наличием транслокации у родителей, при рождении предыдущего ребенка с хромосомной болезнью);

¾ подозрение на синдромы с хромосомной нестабильностью (учет хромосомных аберраций и сестринских хроматид);

¾ патология плода, выявленная при УЗИ.

Спектроскопический анализ хромосом (SKY). При этом методе используются флюоресцентные красители, имеющие сродство к определенным участкам хромосом. При использовании набора специфических зондов с разными красителями каждая пара хромосом имеет свои уникальные спектральные характеристики. Особенность метода - использование интерферометра, аналогично используемого для измерения спектра астрономических объектов. Незначительные вариации в спектральном составе, не различимые человеческим глазом, учитываются при компьютерной обработке, и затем программа назначает каждой паре хромосом легко распознаваемые цвета. Результат в виде цветного изображения чаще используется в цифровой форме. Анализ кариотипа значительно облегчается, поскольку гомологичные хромосомы имеют один и тот же цвет, а аберрации становятся легкоразличимыми. Кроме того, спектральное кариотипирование используется для выявления транслокаций, не распознаваемых традиционными методами.

В настоящее время для того чтобы исключить хромосомный дисбаланс как возможную причину репродуктивных проблем, кариотипирование проводится на самом современном уровне с использованием компьютерных программ хромосомного анализа, получением четкого графического изображения хромосом. Однако серьезные трудности представляют «маркерные» и «атипичные» хромосомы, не идентифицируемые обычными цитогенетическими методами, несбалансированные транслокации, интерстициальные и концевые делеции (потери) или вставки хромосомного материала и другие аномалии. Лишь в начале 90-х годов прошлого столетия с появлением молекулярно-цитогенетических методов проблема диагностики хромосомных болезней стала близка к разрешению.

Метод FISH-анализа (Fluorescence in situ hybridization) позволяет объективно выявлять индивидуальные хромосомы и их отдельные участки на метафазных пластинках (хромосомы в состоянии максимальной конденсации и визуализации) или интерфазных ядрах (деконденсированные хромосомы, без четкой морфологической структуры) на основе особенностей их молекулярно-генетического строения. Объектом исследования в данном случае являются особенности нуклеотидного состава конкретной хромосомы или ее отдельного участка.

Классический метод FISH-анализа основан на гибридизации известной по нуклеотидному составу ДНК-пробы с участком тестируемой хромосомы и с последующим выявлением результата гибридизации по метке – флуоресцентному сигналу в ожидаемом месте. Метод FISH-анализа превратился в необходимую аналитическую процедуру в ходе цитогенетического исследования и стал востребованным сегодня в пре- и постнатальной диагностике.

Основные преимущества FISH-анализа:

¾ высокая разрешающая способность (на препаратах можно выявлять те хромосомные нарушения, которые не визуализируются в обычный световой микроскоп);

¾ точность диагностики (размер проб может варьировать от 90-100 тыс. до нескольких миллионов пар нуклеотидов, так что в качестве мишени могут быть не только отдельные гены или хромосомные участки, но и целая хромосома).FISH-анализ позволяет выявить, к примеру, несколько аномальных клеток среди тысяч клеток с нормальным генотипом.

В течение беременности в ходе различных анализов и исследований могут быть диагностированы хромосомные патологии плода, которые являются по своей сути наследственными заболеваниями. Обусловлены они изменениями в структуре или числе хромосом, что объясняет их название.

Основная причина возникновения - мутации в половых клетках матери или отца. Из них по наследству передаются только 3-5%. Из-за подобных отклонений происходит около 50% абортов и 7% мёртворождений. Так как это серьёзные генные пороки, на протяжении всей беременности родителям следует внимательнее относиться ко всем назначаемым анализам, особенно, если они находятся в группе риска.

Если у родителей (у обоих) имеются в роду наследственные заболевания, им в первую очередь необходимо знать, что это такое - хромосомные патологии плода, которые могут выявить у их ребёнка, пока он ещё в утробе. Осведомлённость позволит избежать нежелательного зачатия, а если это уже произошло, - исключить самые тяжёлые последствия, начиная от внутриутробной гибели малыша и заканчивая внешними мутациями и уродствами после его рождения.

У нормального, здорового человека хромосомы выстраиваются в 23 пары, и каждая отвечает за какой-то определённый ген. Всего получается 46. Если их количество или строение иное, говорят о хромосомных патологиях, разновидностей которых в генетике очень много. И каждая из них влечёт за собой опасные последствия для жизни и здоровья малыша. Основные причины такого рода аномалий неизвестны, однако существуют определённые группы риска.

С миру по нитке. Одна из самых редких хромосомных патологий называется синдромом кошачьего крика. Причина - мутация 5-ой хромосомы. Заболевание проявляется в виде умственной отсталости и характерном плаче ребёнка, который очень напоминает кошачий крик.

Причины

Чтобы предупредить или вовремя распознать хромосомные патологии плода при беременности, врачи должны опросить будущих родителей о наследственных заболеваниях и условиях проживания их семьи. Согласно последним исследованиям, именно от этого зависят генные мутации.

Существует определённая группа риска, в которую входят:

  • возраст родителей (обоих) старше 35 лет;
  • наличие ХА (хромосомных аномалий) у кровных родственников;
  • вредные условия работы;
  • длительное проживание в экологически неблагополучном районе.

Во всех этих случаях существует достаточно высокий риск хромосомной патологии плода, особенно при наличии наследственных заболеваний на генном уровне. Если эти данные выявляются своевременно, врачи вряд ли посоветуют паре рожать вообще. Если же зачатие уже произошло, будет определяться степень поражения ребёнка, его шансы на выживание и дальнейшую полноценную жизнь.

Механизм возникновения. Хромосомные патологии развиваются у плода, когда образуется зигота и происходит слияние сперматозоида и яйцеклетки. Данный процесс не поддаётся контролю, потому что ещё мало изучен.

Признаки

Так как процесс возникновения и развития подобного рода отклонений изучен недостаточно, маркеры хромосомной патологии плода считаются условными. К ним относятся:

  • , тянущие боли в нижней части живота на ранних сроках беременности;
  • низкий уровень РАРР-А (протеин А из плазмы) и АФП (белок, вырабатываемый организмом эмбриона), повышенный ХГЧ (хорионический гонадотропин - гормон плаценты): для получения таких данных берётся из вены кровь на хромосомную патологию плода на сроке 12 недель (+/- 1-2 недели);
  • длина носовых костей;
  • увеличенная шейная складка;
  • неактивность плода;
  • увеличенные лоханки почек;
  • замедленный рост трубчатых костей;
  • ранее старение или гипоплазия плаценты;
  • плохие результаты допплерометрии (метода УЗИ для выявления патологий кровообращения) и КТГ (кардиотокографии);
  • — и ;
  • гиперэхогенный кишечник;
  • маленький размер верхнечелюстной кости;
  • увеличенный мочевой пузырь;
  • кисты в головном мозге;
  • отёчности в области спины и шеи;
  • гидронефроз;
  • лицевые деформации;
  • кисты пуповины.

Неоднозначность этих признаков в том, что каждый из них в отдельности, как и весь выше перечисленный комплекс, может быть нормой, обусловленной индивидуальными особенностями организма матери или ребёнка. Самые точные и достоверные данные дают обычно анализ крови на хромосомные патологии, УЗИ и инвазивные методики.

По страницам истории. Исследовав хромосомы современных людей, учёные выяснили, что все они получили свою ДНК от одной женщины, которая проживала где-то на территории Африки 200 000 лет назад.

Диагностические методы

Самый информативный метод диагностики хромосомных патологий плода - первый скрининг (его ещё называют двойным тестом). Делают в 12 недель беременности. Он включает в себя:

  • УЗИ (выявляются маркеры, обозначенные выше);
  • анализ крови (берётся из вены на голодный желудок), показывающий уровень АФП, ХГЧ, АРР-А.

Следует понимать, что данный анализ на хромосомные патологии плода не может дать точного, 100% подтверждения или опровержения наличия аномалий. Задача врача на данном этапе - рассчитать риски, которые зависят от результатов исследований, возраста и анамнеза молодой мамы. Второй скрининг (тройной тест) ещё менее информативен. Самая точная диагностика - это инвазивные методы:

  • биопсия хориона;
  • забор пуповинной крови;
  • анализ амниотической жидкости.

Цель всех этих исследований - определить кариотип (совокупность признаков набора хромосом) и в связи с этим хромосомную патологию. В этом случае точность постановки диагноза составляет до 98%, тогда как риск выкидыша - не более 2%. Как же происходит расшифровка данных, полученных в ходе этих диагностических методик?

УЗИ и риски для плода. Вопреки распространённому мифу о вреде ультразвука для плода, современная аппаратура позволяет свести негативное воздействие УЗ-волн на малыша к нулю. Так что не стоит бояться этой диагностики.

Расшифровка и расчёт рисков

После того, как первый двойной скрининг сделан, анализируются УЗИ-маркеры хромосомной патологии плода, которые были выявлены в ходе исследования. На их основании высчитывает риск развития генетических аномалий. Самый первый признак - ненормальный размер воротникового пространства у ещё не рождённого ребёнка.

Ультразвуковые маркеры

Принимаются во внимание абсолютно все УЗ маркеры хромосомной патологии плода 1 триместра, чтобы сделать необходимые расчёты возможных рисков. После этого клиническая картина дополняется анализом крови.

Маркеры крови

Все остальные показатели считаются отклонениями от нормы.

Во II триместре ещё оцениваются ингибин А, неконъюгированный эстриол и плацентарный лактоген. Вся расшифровка результатов проведённых исследований производится специальной компьютерной программой. Родители могут увидеть в итоге следующие значения:

  • 1 к 100 - означает, что риск генетических пороков у малыша очень высокий;
  • 1 к 1000 - это пороговый риск хромосомной патологии плода, который считается нормой, но чуть заниженное значение может означать наличие каких-то аномалий;
  • 1 к 100 000 - это низкий риск хромосомной патологии плода, так что опасаться за здоровье малыша с точки зрения генетики не стоит.

После того, как врачи производят расчёт риска хромосомной патологии у плода, либо назначаются дополнительные исследования (если полученное значение ниже, чем 1 к 400), либо женщина спокойно дохаживает беременность до благополучного исхода.

Это любопытно! Мужская Y-хромосома - самая маленькая из всех. Но именно она передаётся от отца к сыну, сохраняя преемственность поколений.

Прогнозы

Родителям, у ребёнка которых внутриутробно были обнаружены хромосомные патологии, должны понять и принять как данность, что они не лечатся. Всё, что может предложить им медицина в таком случае, - это искусственное прерывание беременности. Прежде чем принимать такое ответственное решение, нужно проконсультироваться у врачей по следующим вопросам:

  • Какая именно патология была диагностирована?
  • Какие последствия она будет иметь для жизни и здоровья ребёнка?
  • Велика ли угроза выкидыша и мертворождения?
  • До скольки лет доживают дети с таким диагнозом?
  • Готовы ли вы стать родителями ребёнка-инвалида?

Чтобы принять правильное решение о том, оставить больного малыша или нет, нужно объективно оценить все возможные последствия и результаты хромосомной патологии плода совместно с врачом. Во многом они зависят от того, какую именно генетическую аномалию предполагают медики. Ведь их достаточно много.

Любопытный факт. Больных синдромом Дауна принято называть солнечными людьми. Они редко агрессивны, чаще всего очень дружелюбны, общительны, улыбчивы и даже в чём-то талантливы.

Заболевания

Последствия хромосомных патологий, выявленных у плода, могут быть самыми различными: от внешних уродств до поражения ЦНС. Во многом они зависят от того, какая именно аномалия произошла с хромосомами: изменилось их количество или мутации коснулись их структуры. Среди самых распространённых заболеваний можно выделить следующие.

Нарушение числа хромосом

  • Синдром Дауна - патология 21-й пары хромосом, в которой оказывается три хромосомы вместо двух; соответственно, у таких людей их 47 вместо нормальных 46; типичные признаки: слабоумие, задержка физического развития, плоское лицо, короткие конечности, открытый рот, косоглазие, выпученные глаза;
  • синдром Патау - нарушения в 13-й хромосоме, очень тяжёлая патология, в результате которой у новорождённых диагностируются многочисленные пороки развития, в том числе идиотия, многопалость, глухота, мутации половых органов; такие дети редко доживают до года;
  • синдром Эдвардса - проблемы с 18-й хромосомой, связанные зачастую с пожилым возрастом матери; детки рождаются с маленькой нижней челюстью и ртом, узкими и короткими глазными щелями, деформированными ушами; 60% больных малышей умирают до 3 месяцев, а до года доживают 10%, основные причины летального исхода - остановка дыхания и пороки сердца.

Нарушение числа половых хромосом

  • Синдром Шерешевского-Тёрнера - неправильное формирование половых желёз (чаще всего у девочек), обусловленное отсутствием или дефектами половой Х-хромосомы; среди симптомов - половой инфантилизм, складки кожи на шее, деформация локтевых суставов; дети с такой хромосомной патологией выживают, хотя роды протекают очень трудно, а в будущем при правильном поддерживающем лечении женщины способны даже выносить собственного малыша (путём ЭКО);
  • полисомия по Х- или Y-хромосоме - самые разные нарушения хромосом, отличается снижением интеллекта, повышенной вероятностью развития шизофрении и психозов;
  • синдром Клайнфельтера - нарушения X-хромосом у мальчиков, которые в большинстве случаев после родов выживают, но имеют специфический внешний вид: отсутствие растительности на теле, бесплодие, половой инфантилизм, умственная отсталость (не всегда).

Полиплоидия

  • такая хромосомная патология у плода всегда заканчивается летальным исходом ещё до рождения.

Почему происходят генные мутации на уровне хромосом, учёные до сих пор пытаются выяснить. Однако это ещё только дело будущего, а на данный момент времени хромосомные патологии, выявляемые внутриутробно у плода, составляют до 5% всех случаев.

Что делать родителям, услышавшим подобный диагноз? Не паниковать, смириться, выслушать врачей и совместно с ними принять правильное решение - оставить больного малыша или согласиться на искусственное прерывание беременности.

Любая беременность, независимо от возраста матери, может быть осложнена хромосомной аномалией. Существуют отклонения, некоторые из которых являются несовместимыми с жизнью и приводят к раннему прерыванию беременности. Другие отклонения в хромосомах приводят к смерти плода на более поздних сроках или к смерти новорожденного. Поэтому беременным предлагают сделать обследование на хромосомные аномалии, способные повлиять на плод.

Анализ на хромосомные аномалии при беременности на 11 - 14-й неделе

На этих неделях беременности женщинам может быть предложено затылочное сканирование. Если оправданно, может быть проведено исследование ворсинок хориона.

Затылочное сканирование

Ультразвуковые обследования конца 80-х - начала 90-х гг. предположили, что маленькое пространство на задней стороне шеи ребенка может увеличиваться в размерах у детей с хромосомными отклонениями. Размеры этого пространства, возраст матери и размер ребенка позволяют вычислить риск. В дополнение измерения протеинов и гормонов на ранней стадии беременности в сочетании с информацией УЗИ позволяет точнее оценить риск.

Факты показывают, что затылочное сканирование определяет 85-90% хромосомных аномалий и дефектов. Сканирование проводится на 11-14-й неделе беременности. Женщинам с положительным результатом сканирования предлагается пройти исследование ворсинок хориона, амниоцентез или детальное УЗИ.

Исследование ворсинок хориона

Исследование ворсинок хориона - это инвазивная процедура, в ходе которой извлекается маленький кусочек ткани плаценты. Поскольку плацента происходит из оплодотворенной яйцеклетки, в норме она содержит те же клетки, что и плод.

Используются две техники:

  • в трансцервикальном способе тонкую иглу с помощью ультразвука направляют через шейку матки в плацентарную ткань;
  • в абдоминальном - тонкая игла вводится в плаценту через материнский живот.

Перед введением иглы делается местная анестезия, посте чего на обследование берется 30 мг плацентарной ткани. Но существует 1-2% вероятности выкидыша.

Исследование ворсинок хориона делается до 9-й недели детям с аномалиями в формировании конечностей. У подобного анализа есть преимущество ранней диагностики всяких отклонений.

Анализ на хромосомные аномалии при беременности на 15 - 19-й неделе

На более поздних этапах беременности делаются другие анализы.

Амниоцентез

Заключается в введении тонкой иглы через переднюю стенку живота женщины в амниотический мешок сообразуясь с данными ультразвукового сканирования. Как правило, он делается на 16-й неделе и часто предлагается женщинам парше 55. На анализ берется примерно 15-20 мл амниотической жидкости.

В некоторых клиниках предварительный результат доводят до сведения пациенток сразу, для выявления распространенных хромосомных аномалий обычно требуется три дня, а окончательного же диагноза нужно ждать 2-3 недели. Риск выкидыша посте этого анализа, к сожалению, составляет 1%. Бывает, что клетки не растут или растут произвольно, вследствие чего вывод сделать нельзя и требуется взять новый анализ.

Анализ сыворотки

Подобный анализ можно делать всем женщинам, вне зависимости от их возраста. Исследования показывают, что уровень гормонов и протеинов, образующихся во время беременности, может быть больше или меньше, если беременность имеет отклонения от нормы. Концентрацию же протеинов можно измерить и сравнить с ожидаемой.

Соотнеся возраст матери, результаты анализов и срок беременности, каждой паре называют примерную вероятность того, что у их ребенка может развиться синдром Дауна. Вероятность возникновения заболевания имеет очень большой разброс, но обычно это один случай на несколько сотен или даже тысяч. Амниоцентез, как правило, предлагается женщине, у которой вероятность рождения больного ребенка 1:250 или больше этого значения.

Важно подчеркнуть, что анализ сыворотки - лишь обследование, а вовсе не диагностика. Достаточно сказать, что примерно 60-70% женщин из группы риска в качестве диагностики выберут инвазивную процедуру. Это исследование предлагается в большинстве центров матери и ребенка.

Анализ на хромосомные аномалии при беременности после 20 недель

После 20-й недели беременности у плода с хромосомными аномалиями развиваются разнообразные структурные дефекты. Например, примерно у трети плодов с синдромом Дауна будет порок сердца. У детей с трисомией 13-и или 18-й хромосомы (когда в 13-й или 18-й паре появилась лишняя) будут дефектные пальцы, печень, пальцы ног, губа, и произойдет нарушение мозговой функции.

УЗИ аномалий

Структурные аномалии могут быть заметны на специальном ультразвуковом обследовании аномалий. Дети, у которых при этом выявится хотя бы одна из искомых аномалий, рискуют стать носителями и других отклонений. В зависимости от природы аномалии, возможно, лучше все равно провести инвазивный анализ, для того чтобы точно определить, стала ли ее причиной хромосомная мутация или нет. УЗИ - не диагностика, поэтому без инвазивного обследования оно может выявить только половину больных синдромом Дауна детей.

Кордоцентез

Самый редкий анализ на хромосомные аномалии, который проводится только в специальных центрах начиная с 20-й недели беременности. В ходе этой процедуры тонкая игла протыкает пуповину и берет оттуда на анализ кровь плода. В рутах специалиста риск выкидыша составит примерно 1%; риск же того, что результаты получатся неверными, гораздо ниже, чем при амниоцентезе.

Этот анализ чаще делается беременной женщине, если видимые на ультразвуке аномалии больше похожи на хромосомные. Например, порок сердца может связываться с синдромом Дауна, поэтому после УЗИ аномалий, на котором он был замечен, предлагается инвазивная процедура.

Диагностика хромосомной аномалии плода (ХА).

Наиболее информативен первый скрининг или двойной тест. Его надо делать строго на . Он состоит из (особенно важно правильно оценить толщину воротникового пространства плода, и диагностировать наличие носовых косточек) и анализа крови на РАРР-А и β -ХГЧ.

Заключение скрининга – это не диагноз, так как не дает точного ответа на вопрос о наличии или отсутствии ХА. Его задача - в зависимости от уровня биохимических маркеров, хронических заболеваний, возраста и анамнеза беременной, определить группы риска женщин (низкий, средний, высокий), по той или иной хромосомной или врождённой аномалии развития плода. Второй скрининг, «тройной тест» или «четверной тест», проводимый с 16 по 18 неделю беременности, не информативен для выявления ХА, в большей степени подтверждает наличие врождённой аномалии плода (пороки развития).

Узнать точно, есть ли у ребеночка ХА, можно только при помощи инвазивных методов - биопсии хориона, забора пуповинной крови, анализа амниотической жидкости.

Цель этих анализов - определение кариотипа плода. Точность - 98%. Риск выкидыша - 1-2%. ХА не лечатся. После выявления ХА все, что может предложить медицина, - прерывание беременности.

Однозначных причин возникновения ХА не известно. Повышенный риск существует, если:

Возраст матери и отца превышает 35 лет,

Есть ХА у кровных родственников,

Есть сбалансированная транслокация у кровных родственников или у родителей,

Родители работают на вредных производствах, семья проживает в экологически неблагополучном районе

Воздействие радиации, излучения на малых срока беременности

Механизм возникновения ХА

ХА возникает у плода в момент образования зиготы, т.е. при слиянии яйцеклетки и сперматозоида. Материнская и отцовская клетка несут по 23 хромосомы (23 от мамы и 23 от папы). Обе клетки могут уже нести в себе «ломаные» хромосомы (даже если мама и папа абсолютно здоровы). Сбой может произойти и в момент слияния двух абсолютно здоровых родительских клеток. В этом случае «расходятся» неверно хромосомы плода. Этот процесс еще не изучен и не поддается контролю.

Изучено и описано более 300 хромосомных синдромов.

Учитывая, что у человека 23 парных хромосомы и существует несколько видов аберрации, количество хромосомных синдромов, не описанных в литературе и возникающих вновь, не ограничено!

Аберрации могут быть разные: полные и частичные трисомии, делеции, моносомии, мозаицизм транслокации и т.д. Выраженность признаков при хромосомном синдроме зависит от вида аберрации. Самый благоприятный вид - сбалансированная транслокация. Люди с такими изменениями ничем не отличаются от обычных, их особенность может быть выявлена только путем кариотипирования, однако у них повышен риск рождения детей с хромосомными синдромами - от 10 до 50% (средний риск в популяции - 5%).

Следующий наименее «травматичный» вид аберрации - мозаицизм, при котором хромосомное нарушение проявляется не во всех клетках и/или органах. Частичные трисомии и делеции дают уже значительные пороки развития, порой не совместимые с жизнью.

Самый тяжелый вид - полная трисомия или моносомия хромосомы.

Большая часть беременностей с хромосомной патологией плода отторгается самим организмом на самых ранних сроках или на сроке 20-23 недели, так как при хромосомной патологии плода велика вероятность различных патологий беременности (невынашивание, угроза выкидыша, гипертонус матки, преждевременное старение плаценты, токсикоз, гестоз, гипоксия плода и т.д.). Также многие малыши не доживают до года ввиду множественных пороков развития. Средняя продолжительность жизни людей с ХА - 30 лет, но есть описанные случаи пациентов с ХА доживших до 60 лет и более.

Люди с хромосомными синдромами могут быть как тяжелыми инвалидами, так и абсолютно полноценными членами общества, получившими полноценное образование и имеющими обычную работу. Все зависит от вида аберрации, общего состояния организма и труда родных и близких. В большинстве случаев люди с хромосомными синдромами могут себя обслуживать, общаться, выполнять посильную работу. Интеллект снижен, есть хронические заболевания органов и систем организма.

С уважением, Коцарев Е.А.